【题目】如图,在直棱柱
(I)证明:;
(II)求直线所成角的正弦值。
【答案】(I)见解析(II)
【解析】
试题(I)根据直棱柱性质,得⊥平面ABCD,从而AC⊥,结合∩BD=B,证出AC⊥平面,从而得到;(II)根据题意得AD∥,可得直线与平面所成的角即为直线AD与平面所成的角.连接,利用线面垂直的性质与判定证出⊥平面,从而可得.由AC⊥,可得⊥平面,从而得到与AD与平面所成的角互余.在直角梯形ABCD中,根据Rt△ABC∽Rt△DAB,算出AB=,最后在Rt△中算出,可得,由此即可得出直线与平面所成的角的正弦值
试题解析:(1)因为平面,所以,因为故面,所以;
(2)以A为原点,AB所在边为x轴,AD所在边为y轴,AA1所在边为z轴建立空间直角坐标系,则,所以,;
因为,,所以,
因为,所以,
故,所以,
设为的法向量,
则,令,
所以为的一个法向量;
因为,,所以
所以直线所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】已知是两条异面直线,直线与都垂直,则下列说法正确的是( )
A. 若平面,则
B. 若平面,则,
C. 存在平面,使得,,
D. 存在平面,使得,,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在边长为3的菱形中,已知,且.将梯形沿直线折起,使平面,如图2,分别是上的点.
(1)若平面平面,求的长;
(2)是否存在点,使直线与平面所成的角是?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设为抛物线的焦点,过点的直线与抛物线相交于、两点.
(1)若,求此时直线的方程;
(2)若与直线垂直的直线过点,且与抛物线相交于点、,设线段、的中点分别为、,如图,求证:直线过定点;
(3)设抛物线上的点、在其准线上的射影分别为、,若△的面积是△的面积的两倍,如图,求线段中点的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】焦点在x轴上的椭圆C:经过点,椭圆C的离心率为.,是椭圆的左、右焦点,P为椭圆上任意点.
(1)求椭圆的标准方程;
(2)若点M为的中点(O为坐标原点),过M且平行于OP的直线l交椭圆C于A,B两点,是否存在实数,使得;若存在,请求出的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的右焦点为,过点作与轴垂直的直线交椭圆于,两点(点在第一象限),过椭圆的左顶点和上顶点的直线与直线交于点,且满足,设为坐标原点,若,,则该椭圆的离心率为( )
A. B. C. 或 D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4—4:坐标系与参数方程]
在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求的直角坐标方程;
(2)若与有且仅有三个公共点,求的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com