【题目】如图,在多面体中,、、均垂直于平面,,,,.
(1)求与平面所成角的大小;
(2)求二面角的大小.
【答案】(1);(2)
【解析】
由题意建立空间直角坐标系.
(1)由已知分别求出的坐标与平面A1B1C1 的一个法向量,则线面角可求;
(2)求出平面AA1B1 的一个法向量,结合(1),由两法向量所成角的余弦值可得二面角A﹣A1B1﹣C1的大小.
由题意建立如图所示空间直角坐标系,
∵AA1=4,CC1=3,BB1=AB=AC=2,∠BAC=120°,
∴A(0,0,0),A1 (0,0,4),B1 (,﹣1,2),C1 (0,2,3).
(1),,,
设平面A1B1C1 的一个法向量为,
由,取y=1,得.
∴AB1与A1B1C1所成角的最小值sinθ=|cos|.
∴AB1与A1B1C1所成角的大小为;
(2)设平面AA1B1 的一个法向量为,
由,取x1=1,得.
∴cos.
∴二面角A﹣A1B1﹣C1的大小为.
科目:高中数学 来源: 题型:
【题目】如图①,在等腰梯形中,分别为的中点 为中点,现将四边形沿折起,使平面平面,得到如图②所示的多面体,在图②中.
(1)证明:;
(2)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.
(1)将红色卡片和蓝色卡片分别放在两个袋中,然后从两个袋中各取一张卡片,求两张卡片数字之积为偶数的概率
(2)将五张卡片放在一个袋子中,从中任取两张,求两张卡片颜色不同的概率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率是,上顶点B是抛物线的焦点.
(1)求椭圆的标准方程;
(2)若是椭圆上的两个动点,且(是坐标原点),试问:点到直线的距离是否为定值?若是,试求出这个定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定数列,若满足(且),对于任意,都有,则称数列为指数数列.
(1)已知数列、的通项公式分别为,,试判断、是不是指数数列(需说明理由);
(2)若数列满足:,,,证明:是指数数列;
(3)若是指数数列,,证明:数列中任意三项都不能构成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4—4:坐标系与参数方程]
在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求的直角坐标方程;
(2)若与有且仅有三个公共点,求的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com