精英家教网 > 高中数学 > 题目详情

【题目】有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.

1)将红色卡片和蓝色卡片分别放在两个袋中,然后从两个袋中各取一张卡片,求两张卡片数字之积为偶数的概率

2)将五张卡片放在一个袋子中,从中任取两张,求两张卡片颜色不同的概率

【答案】1 2

【解析】

古典概型的概率等于满足事件A的基本事件的个数与基本事件总数之比,解决此类题目,一般用列举法.

1)将红色卡片和蓝色卡片分别放在两个袋中,然后从两个袋中各取一张卡片的所有可能情况有如下6种:红11,红12,红21,红22,红31,红32.

其中两张卡片数字之积为偶数有4种:红12,红21,红22,红32.

故所求的概率为.

2)将五张卡片放在一个袋子中,从中任取两张的所有情况有如下10种:红12,红13,红11,红12,红23,红21,红22,红31,红32,蓝12.

其中两张卡片颜色不同的情况有6种:红11,红12,红21,红22,红31,红32.故所求的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知过定点且与直线垂直的直线与轴、轴分别交于点,点满足.

1)若以原点为圆心的圆有唯一公共点,求圆的轨迹方程;

2)求能覆盖的最小圆的面积;

3)在(1)的条件下,点在直线上,圆上总存在两个不同的点使得为坐标原点),求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,底面是边长为1的菱形,分别为的中点.

1)证明:直线平面

2)求异面直线所成角的大小;

3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关命题的说法正确的是__________________.

①命题x23x20,则x1”的逆否命题为:若x≠1,则x23x2≠0

x1x23x20的充分不必要条件

③若pq为假命题,则pq均为假命题

④对于命题pxR,使得x2x1<0,则非pxR 均有x2x1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在边长为3的菱形中,已知,且.将梯形沿直线折起,使平面,如图2,分别是上的点.

(1)若平面平面,求的长;

(2)是否存在点,使直线与平面所成的角是?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,正确的是(

A.一条直线与两个平行平面中的一个平行,则必与另一个平面平行

B.空间中两条直线要么平行,要么相交

C.空间中任意的三个点都能唯一确定一个平面

D.对于空间中任意两条直线,总存在平面与这两条直线都平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,均垂直于平面.

1)求与平面所成角的大小;

2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】焦点在x轴上的椭圆C经过点,椭圆C的离心率为是椭圆的左、右焦点,P为椭圆上任意点.

1)求椭圆的标准方程;

2)若点M的中点(O为坐标原点),过M且平行于OP的直线l交椭圆CAB两点,是否存在实数,使得;若存在,请求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,左、右焦点分别为为椭圆C上一点,且的中点By轴上,.

1)求椭圆C的标准方程:

2)若直线交椭圆于PQ两点,若PQ的中点为NO为原点,直线ON交直线于点M,求的最大值.

查看答案和解析>>

同步练习册答案