【题目】已知椭圆![]()
的离心率为
,左、右焦点分别为
、
,
为椭圆C上一点,且
的中点B在y轴上,
.
![]()
(1)求椭圆C的标准方程:
(2)若直线![]()
交椭圆于P、Q两点,若PQ的中点为N,O为原点,直线ON交直线
于点M,求
的最大值.
【答案】(1)
;(2)![]()
【解析】
(1)由BO为
的中位线,可求出
,由此可设
,代入椭圆方程,联立
,
,即可求出
,
,从而得到椭圆方程;
(2)设
、
,联立
,化为关于x的一元二次方程,由根与系数的关系及中点坐标公式求出PQ的中点N的坐标,再由弦长公式求出
,由点N的坐标写出直线ON的方程,求出点M.的坐标,再由两点间距离公式求出
,然后求
,换元法求出其最大值.
(1)因为B为
的中点, O为线段
的中点,
所以BO为
的中位线,所以
,
又因为
,所以
,所以可设![]()
又
为椭圆C上一点,所以将
代入椭圆方程可得![]()
又
,
,联立解得
,
,
故所求椭圆方程为
;
(2)由直线方程为
,
联立
,可得
.
设
、
,则
,
,
所以为![]()
;
所以PQ的中点N坐标为
,![]()
因此直线ON的方程为
,
从而点M为
,又
,所以
,
设![]()
,令
,则
,
所以![]()
![]()
,
因此当
,即
时
取得最大值
.
科目:高中数学 来源: 题型:
【题目】有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.
(1)将红色卡片和蓝色卡片分别放在两个袋中,然后从两个袋中各取一张卡片,求两张卡片数字之积为偶数的概率
(2)将五张卡片放在一个袋子中,从中任取两张,求两张卡片颜色不同的概率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂用甲、乙两种不同工艺生产一大批同一种零件,零件尺寸均在[21.7,22.3](单位:cm)之间的零件,把零件尺寸在[21.9,22.1)的记为一等品,尺寸在[21.8,21.9)
[22.1,22.2)的记为二等品,尺寸在[21.7,21.8)
[22.2,22.3]的记为三等品,现从甲、乙工艺生产的零件中各随机抽取100件产品,所得零件尺寸的频率分布直方图如图所示:
![]()
(Ⅰ)根据上述数据完成下列2×2列联表,根据此数据你认为选择不同的工艺与一等品产出率是否有关?
甲工艺 | 乙工艺 | 总计 | |
一等品 | |||
非一等品 | |||
总计 |
P(K2≥k) | 0.1 | 0.05 | 0.01 |
k | 2.706 | 3.841 | 6.635 |
附:
,其中
.
(Ⅱ)以上述两种工艺中各种产品的频率作为相应产品产出的概率,若一等品、二等品、三等品的单件利润分别为30元、20元、15元,从一件产品的平均利润考虑,你认为以后该工厂应该选择哪种工艺生产该种零件?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知底面边长为a的正三棱柱
(底面是等边三角形的直三棱柱)的六个顶点在球
上,且球
与此正三棱柱的5个面都相切,则球
与球
的表面积之比为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:
①
②
是等边三角形 ③AB与平面BCD所成的角是
④AB与CD所成角为
,其中错误的结论个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4—4:坐标系与参数方程]
在直角坐标系
中,曲线
的方程为
.以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求
的直角坐标方程;
(2)若
与
有且仅有三个公共点,求
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面上的三点
、
、
.
(1)求以
、
为焦点且过点
的椭圆的标准方程;
(2)设点
、
、
关于直线
的对称点分别为
、
、
,求以
、
为焦点且过点
的双曲线的标准方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com