【题目】给定数列
,若满足
(
且
),对于任意
,都有
,则称数列
为指数数列.
(1)已知数列
、
的通项公式分别为
,
,试判断
、
是不是指数数列(需说明理由);
(2)若数列
满足:
,
,
,证明:
是指数数列;
(3)若
是指数数列,
,证明:数列
中任意三项都不能构成等差数列.
【答案】(1)
不是指数数列,
是指数数列,见解析;(2)见解析;(3)见解析
【解析】
(1)对数列
、
,验证
与
,
与
是否相等,由此判断出
、
是不是指数数列.
(2)利用累加法求得数列
的通项公式,然后验证
,由此证得
是指数数列.
(3)首先根据指数数列的定义求得数列
的通项公式,利用反证法,证得数列
中任意三项都不能构成等差数列.
(1)对于数列
,
,
,
,因为
,所以
不是指数数列.
对于数列
,对任意
,因为
,所以
是指数数列.
(2)由题意,
,所以数列
是首项为
,公比为2的等比数列.所以
.
所以,![]()
,
即
的通项公式为
.所以
,故
是指数数列.
(3)因为数列
是指数数列,故对于任意的
,有
,令
,则
,
所以
是首项为
,公比为
的等比数列,所以,
.
假设数列
中存在三项
,
,
构成等差数列,不妨设
,
则由
,得
,所以
,
当
为偶数时,
是偶数,而
是偶数,
是奇数,
故
不能成立;
当
为奇数时,
是偶数,而
是奇数,
是偶数,
故
也不能成立.
所以,对任意
,
不能成立,
即数列
的任意三项都不成构成等差数列.
(另证:因为对任意
,
一定是偶数,而
与
为一奇一偶,故
与
也为一奇一偶,故等式右边一定是奇数,等式不能成立.)
科目:高中数学 来源: 题型:
【题目】青岛二中高一高二高三三个年级数学MT的学生人数分别为240人,240人,120人,现采用分层抽样的方法从中抽取5名同学参加团队内部举办的趣味数学比赛,再从5位同学中选出2名一等奖记A=“两名一等奖来自同一年级”,则事件A的概率为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有关命题的说法正确的是__________________.
①命题“若x2-3x+2=0,则x=1”的逆否命题为:若x≠1,则x2-3x+2≠0
②x=1是x2-3x+2=0的充分不必要条件
③若p∧q为假命题,则p,q均为假命题
④对于命题p:x∈R,使得x2+x+1<0,则非p:x∈R, 均有x2+x+1≥0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中,正确的是( )
A.一条直线与两个平行平面中的一个平行,则必与另一个平面平行
B.空间中两条直线要么平行,要么相交
C.空间中任意的三个点都能唯一确定一个平面
D.对于空间中任意两条直线,总存在平面与这两条直线都平行
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据下图给出的2000年至2016年我国实际利用外资情况,以下结论正确的是
![]()
A. 2000年以来我国实际利用外资规模与年份负相关
B. 2010年以来我国实际利用外资规模逐年增加
C. 2008年我国实际利用外资同比增速最大
D. 2010年以来我国实际利用外资同比增速最大
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】焦点在x轴上的椭圆C:
经过点
,椭圆C的离心率为
.
,
是椭圆的左、右焦点,P为椭圆上任意点.
(1)求椭圆的标准方程;
(2)若点M为
的中点(O为坐标原点),过M且平行于OP的直线l交椭圆C于A,B两点,是否存在实数
,使得
;若存在,请求出
的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了解所经销商品的使用情况,随机问卷50名使用者,然后根据这50名的问卷评分数据,统计得到如图所示的频率布直方图,其统计数据分组区间为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
![]()
(1)求频率分布直方图中a的值;
(2)求这50名问卷评分数据的中位数;
(3)从评分在[40,60)的问卷者中,随机抽取2人,求此2人评分都在[50,60)的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,左、右焦点分别为
,
,焦距为6.
(1)求椭圆
的方程.
(2)过椭圆左顶点的两条斜率之积为
的直线分别与椭圆交于
点.试问直线
是否过某定点?若过,求出该点的坐标;若不过,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com