已知函数是偶函数.
(1) 求的值;
(2) 设,若函数与的图象有且只有一个公共点,求实数的取值范围.
科目:高中数学 来源: 题型:解答题
据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).
(1)当t=4时,求s的值;
(2)将s随t变化的规律用数学关系式表示出来;
(3)若N城位于M地正南方向,且距M地650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某车间有50名工人,要完成150件产品的生产任务,每件产品由3个A 型零件和1个B 型零件配套组成.每个工人每小时能加工5个A 型零件或者3个B 型零件,现在把这些工人分成两组同时工作(分组后人数不再进行调整),每组加工同一中型号的零件.设加工A 型零件的工人人数为x名(x∈N*)
(1)设完成A 型零件加工所需时间为小时,写出的解析式;
(2)为了在最短时间内完成全部生产任务,x应取何值?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某公司试销一种新产品,规定试销时销售单价不低于成本单价500元/件,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价(元/件),可近似看做一次函数的关系(图象如下图所示).
(1)根据图象,求一次函数的表达式;
(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元,
①求S关于的函数表达式;
②求该公司可获得的最大毛利润,并求出此时相应的销售单价.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
一艘轮船在航行过程中的燃料费与它的速度的立方成正比例关系,其他与速度无关的费用每小时96元,已知在速度为每小时10公里时,每小时的燃料费是6元,要使行驶1公里所需的费用总和最小,这艘轮船的速度应确定为每小时多少公里?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
己知某公司生产某品牌服装的年固定成木为10万元,每生产一千件需另投入2.7万元,设该公司年内共生产该品牌服装x千件并全部销售完,每销售一千件的收入为R(x)万元,且
(注:年利润=年销售收入一年总成本)
(1)写出年利润W(万元)关于年产品x(千件)的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设二次函数满足下列条件:
①当时, 的最小值为0,且恒成立;
②当时,恒成立.
(I)求的值;
(Ⅱ)求的解析式;
(Ⅲ)求最大的实数m(m>1),使得存在实数t,只要当时,就有成立
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知定义在的函数,对任意的、,都有,且当时,.
(1)证明:当时,;
(2)判断函数的单调性并加以证明;
(3)如果对任意的、,恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
本小题满分12分)
今有一长2米宽1米的矩形铁皮,如图,在四个角上分别截去一个边长为x米的正方形后,沿虚线折起可做成一个无盖的长方体形水箱(接口连接问题不考虑).
(Ⅰ)求水箱容积的表达式,并指出函数的定义域;
(Ⅱ)若要使水箱容积不大于立方米的同时,又使得底面积最大,求x的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com