精英家教网 > 高中数学 > 题目详情
(2012•湖北模拟)设Sn为数列{an}的前n项和为Sn=λan-1(λ,为常数,n=1,2,3…).
(1)若a3=
a
2
2
,求λ的值;
(2)是否存在实数λ,使得数列{an}是等差数列?若存在,求出λ的值;若不存在,说明理由;
(3)当λ=2量,若数列{cn}满足bn+1=an+bn(n=1,2,3,…),且b1=
2
3
,令cn=
an
(an+1)bn
,求数列{an}的前n项和Tn
分析:(1)由Sn=λan-1,知a1=
1
λ-1
a2=
λ
(λ-1)2
a3=
λ2
(λ-1)3
,再由a3=a22,能求出λ的值.
(2)假设存在实数λ,使得数列{an}是等差数列,则2a2=a1+a3,故
(λ-1)2
=
1
λ-1
+
λ2
(λ-1)3
,由此能够推导出不存在实数λ,使得数列{an}是等差数列.
(3)当λ=2时,Sn=2an-1,故Sn-1=2an-1-1,n≥2,且a1=1,所以an=2n-1,n∈N*.由bn+1=an+bn(n=1,2,3,…),且b1=
2
3
,导出bn=
2n+1
2
,n∈N*,所以cn=
2n-1
(2n-1+1)•
2n+1
2
=2(
1
2n-1+1
-
1
2n+1
),由此利用裂项求和法能求出数列{an}的前n项和Tn
解答:解:(1)∵Sn=λan-1,
∴a1=λa1-1,
a2+a1=λa2-1,
a3+a2+a1=λa3-1,
由a1=λa1-1,得λ≠1,
a1=
1
λ-1
a2=
λ
(λ-1)2
a3=
λ2
(λ-1)3

a3=a22,∴
λ2
(λ-1)3
=
λ2
(λ-1)4

∴λ=0,或λ=2.
(2)假设存在实数λ,使得数列{an}是等差数列,
则2a2=a1+a3
由(1)得
(λ-1)2
=
1
λ-1
+
λ2
(λ-1)3

(λ-1)2
=
2-2λ+1
(λ-1)3
,解得1=0,不成立,
∴不存在实数λ,使得数列{an}是等差数列.
(3)当λ=2时,Sn=2an-1,
∴Sn-1=2an-1-1,n≥2,且a1=1,
∴an=2an-2an-1,即an=2an-1,n≥2,
an=2n-1,n∈N*
∵bn+1=an+bn(n=1,2,3,…),且b1=
2
3

∴bn=an-1+bn-1
=an-1+an-2+bn-2
=…=an-1+an-2+…+a1+b1
=2n-2+2n-3+…+1+
3
2

=
2n+1
2
,n≥2
当n=1时,上式仍然成立,
bn=
2n+1
2
,n∈N*
cn=
an
(an+1)bn

cn=
2n-1
(2n-1+1)•
2n+1
2

=
2•2n-1
(2n-1+1)(2n+1)

=2(
1
2n-1+1
-
1
2n+1
),
∴Tn=c1+c2+…+cn
=2(
1
2
-
1
2+1
+
1
2+1
-
1
22+1
+…+
1
2n-1+1
-
1
2n
)

=1-
2
2n+1

=
2n-1
2n+1
点评:本题考查满足条件的实数值的求法,考查等差数列的判断,考查数列的前n项和的求法.解题时要认真审题,仔细解答,注意裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•湖北模拟)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上有一个顶点到两个焦点之间的距离分别为3+2
2
3-2
2

(1)求椭圆的方程;
(2)如果直线x=t(t∈R)与椭圆相交于A,B,若C(-3,0),D(3,0),证明直线CA与直线BD的交点K必在一条确定的双曲线上;
(3)过点Q(1,0)作直线l(与x轴不垂直)与椭圆交于M、N两点,与y轴交于点R,若
RM
MQ
RN
NQ
,证明:λ+μ为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北模拟)在△ABC中,M是BC的中点,AM=3,点P在AM上,且满足
AP
=2
PM
,则
PA
•(
PB
+
PC
)
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北模拟)已知函数y=g(x)的图象由f(x)=sin2x的图象向右平移φ(0<φ<π)个单位得到,这两个函数的部分图象如图所示,则φ=
π
3
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北模拟)设Sn是等比数列{an}的前n项和,若S1,2S2,3S3成等差数列,则公比q等于
1
3
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北模拟)函数f(x)=aex,g(x)=lnx-lna,其中a为正常数,且函数y=f(x)和y=g(x)的图象在其与坐标轴的交点处的切线互相平行.
(1)求a的值;
(2)若存在x使不等式
x-m
f(x)
x
成立,求实数m的取值范围;
(3)对于函数y=f(x)和y=g(x)公共定义域中的任意实数x0,我们把|f(x0)-g(x0)|的值称为两函数在x0处的偏差.求证:函数y=f(x)和y=g(x)在其公共定义域内的所有偏差都大于2.

查看答案和解析>>

同步练习册答案