精英家教网 > 高中数学 > 题目详情
如图,两矩形ABCD、ABEF所在平面互相垂直,DE与平面ABCD及平面所成角分别为30°、45°,M、N分别为DE与DB的中点,且MN=1.
(I) 求证:MN⊥平面ABCD

(II) 求线段AB的长;
(III)求二面角A-DE-B的平面角的正弦值.
(I)见解析(II)2(III)
本题考查证明线线垂直、线面垂直的方法,求二面角的平面角的大小,找出二面角的平面角 是解题的关键。
(1)利用已知可知∠DEA为DE与平面ABEF所成的角,∴∠DEA=45°在Rt△DAE中,∠DAE=90°,∴AE=DE•cos∠DEA="2" .在Rt△ABE中,AB=2.
(2)利用三垂线定理得到二面角的平面角的大小是解决该试题的关键,
解:(Ⅰ)证明:∵平面ABCD⊥平面ABEF,且平面ABCD∩平面ABEF=AB,
EB⊥AB,∴EB⊥平面ABCD,又MN∥EB,∴MN⊥面ABCD.
(Ⅱ)由(Ⅰ)可知∠EDB为DE与平面ABCD所成的角,∴∠EDB=30°.
又在Rt△EBD中,EB=2MN=2,∠EBD=90°∴DE=4,
连接AE,可知∠DEA为DE与平面ABEF所成的角,∴∠DEA=45°.
在Rt△DAE中,∠DAE=90°,∴AE=DE•cos∠DEA="2" .在Rt△ABE中,AB=2.
(Ⅲ):过B作BO⊥AE于O点,过O作OH⊥DE于H,连BH,∵AD⊥平面ABEF,BO?面ABEF,
∴BO⊥平面ADE,∴OH为BH在平面ADE内的射影,∴BH⊥DE,即∠BHO为所求二面角的平面角.在Rt△ABE中,BO=  . 在Rt△DBE中,由BH•DE=DB•OE得  BH= ,
∴sin∠BHO=  .
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知四棱锥底面ABCD是矩形,PA⊥平面ABCD, AD=2,AB=1,E.F
分别是线段AB.BC的中点,

(1)证明:PF⊥FD;
(2)在PA上找一点G,使得EG∥平面PFD;.
(3)若与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题9分)
如图,四棱锥S—ABCD的底面是正方形,SD平面ABCD,SD=2a,,点E是SD上的点,且

(Ⅰ)求证:对任意的,都有
(Ⅱ)设二面角C—AE—D的大小为,直线BE与平面ABCD所成的角为,若,求的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,A1B1C1—ABC是直三棱柱,∠BCA=90°,点D1、F1分别是A1B1、A1C1的中点,若BC=CA=CC1,则BD1与AF1所成角的余弦值是             .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

长方体的一个顶点上三条棱的边长分别为3、4、5,且它的八个顶点都在同一球
面上,这个球的表面积是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在棱长为的正方体中,点分别是棱的中点,则点到平面的距离是(       ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

①分别与两条异面直线都相交的两条直线一定是异面直线;
②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;
③垂直于同一直线的两条直线相互平行;   
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.
其中为真命题的是(   )            
A.①和②B.②和④C.③和④D.②和③

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将边长为2的正沿边上的高折成直二面角,则三棱锥的外接球的表面积为           

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在侧棱垂直底面的四棱柱ABCD-A1B1C1D1中,AD∥BC,AD⊥AB,AB=。AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点.
(1)证明:(i)EF∥A1D1
(ii)BA1⊥平面B1C1EF;
(2)求BC1与平面B1C1EF所成的角的正弦值.

查看答案和解析>>

同步练习册答案