精英家教网 > 高中数学 > 题目详情
①分别与两条异面直线都相交的两条直线一定是异面直线;
②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;
③垂直于同一直线的两条直线相互平行;   
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.
其中为真命题的是(   )            
A.①和②B.②和④C.③和④D.②和③
B
解:因为
①分别与两条异面直线都相交的两条直线一定是异面直线;可能平行,因此错误。
②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;成立
③垂直于同一直线的两条直线相互平行; 可能相交,错误
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.成立
故选B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,两矩形ABCD、ABEF所在平面互相垂直,DE与平面ABCD及平面所成角分别为30°、45°,M、N分别为DE与DB的中点,且MN=1.
(I) 求证:MN⊥平面ABCD

(II) 求线段AB的长;
(III)求二面角A-DE-B的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是直角梯形,平面,点的中点,且.

(1)求四棱锥的体积;
(2)求证:∥平面
(3)求直线和平面所成的角是正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图示,边长为2的正方形ABCD与正三角形ADP所在平面互相垂直,M是PC的中点。

(1)求证:∥平面
(2)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如下图(图1)等腰梯形上一点,且,沿着折叠使得二面角的二面角,连结,在上取一点使得,连结得到如下图(图2)的一个几何体.
(Ⅰ)求证:平面平面
(Ⅱ)设,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

下面三个图中,右面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在左面画出(单位:cm).


(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三角形的两边长分别为4,5,它们夹角的余弦是方程2x2+3x-2=0的根,则第三边长是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正三棱柱中,.,M为CC1的中点,则直线BM与平面所成角的正弦值是_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

“三角形的三条中线交于一点,且这一点到顶点的距离等于它到对边中点距离的2倍”.试类比:四面体的四条中线(顶点到对面三角形重心的连线段)交于一点,且这一点到顶点的距离等于它到对面重心距离的     倍.

查看答案和解析>>

同步练习册答案