精英家教网 > 高中数学 > 题目详情
f(x)=
-2(x-
1
2
)2+1x∈[0
1
2
)
-2x+2  x∈[
1
2
,1]
,若x0∈[0,
1
2
),x1=f(x0),f(x1)=x0
,则x0=
1
4
1
4
分析:x1=1-2(x0-
1
2
)
2
∈[
1
2
,1],f (x1)=2-2[1-2(x0-
1
2
)
2
]=4(x0-
1
2
)
2
,由f(x1)=x0,整理得4x02-5x0+1=0,计算出x0
解答:解:由已知 x0∈(0,
1
2
)

x1=1-2(x0-
1
2
)
2

由f1(x)的值域,得 x1∈[
1
2
,1]

f (x1)=2-2[1-2(x0-
1
2
)
2
]=4(x0-
1
2
)
2

由f(x1)=x0,整理得4x02-5x0+1=0,
解得 x0=1,x0=
1
4

因为 x0∈(0,
1
2
)
,所以 x0=
1
4

故答案为:
1
4
点评:本小题主要考查分段函数的基本概念和性质等基础知识,考查运算求解能力,考查分析问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法中:
①若定义在R上的函数f(x)满足f(x+2)=-f(x-1),则6为函数f(x)的周期;
②若对于任意x∈(1,3),不等式x2-ax+2<0恒成立,则a>
11
3

③定义:“若函数f(x)对于任意x∈R,都存在正常数M,使|f(x)|≤M|x|恒成立,则称函数f(x)为有界泛函.”由该定义可知,函数f(x)=x2+1为有界泛函;
④对于函数f(x)=
x-1
x+1
,设f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},则集合M为空集.
正确的个数为(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
2-x+a
1+x
(a为实常数),y=g(x)与y=e-x的图象关于y轴对称.
(1)若函数y=f[g(x)]为奇函数,求a的取值.
(2)当a=0时,若关于x的方程f[g(x)]=
g(x)
m
有两个不等实根,求m的范围;
(3)当|a|<1时,求方程f(x)=g(x)的实数根个数,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•内江一模)设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x-2)=f(x+2)且当x∈[-2,0]时,f(x)=(
1
2
x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是
34
,2)
34
,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
2-x-a(x≤0)
f(x-1)(x>0)
,若f(x)=x有且仅有两个实数解,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法中:
①若定义在R上的函数f(x)满足f(x+2)=-f(x-1),则6为函数f(x)的周期;
②若对于任意x∈(1,3),不等式x2-ax+2<0恒成立,则a>
11
3

③定义:“若函数f(x)对于任意x∈R,都存在正常数M,使|f(x)|≤M|x|恒成立,则称函数f(x)为有界泛函.”由该定义可知,函数f(x)=x2+1为有界泛函;
④对于函数f(x)=
x-1
x+1
,设f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},则集合M为空集.
正确的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案