精英家教网 > 高中数学 > 题目详情
已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
3
anan+1
,Tn是数列{bn}的前n项和,求使得Tn
m
20
对所有n∈N*都成立的最小正整数m.
分析:(Ⅰ)设这二次函数f(x)=ax2+bx(a≠0),根据导函数求得f(x)的表达式,再根据点(n,Sn)(n∈N*)均在函数y=f(x)的图象上,求出an的递推关系式,
(Ⅱ)把(1)题中an的递推关系式代入bn,根据裂项相消法求得Tn,最后解得使得Tn
m
20
对所有n∈N*都成立的最小正整数m.
解答:解:(Ⅰ)设这二次函数f(x)=ax2+bx(a≠0),
则f′(x)=2ax+b,
由于f′(x)=6x-2,得
a=3,b=-2,
所以f(x)=3x2-2x.
又因为点(n,Sn)(n∈N*)均在函数y=f(x)的图象上,
所以Sn=3n2-2n.
当n≥2时,an=Sn-Sn-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5.
当n=1时,a1=S1=3×12-2=6×1-5,
所以,an=6n-5(n∈N*
(Ⅱ)由(Ⅰ)得知bn=
3
anan+1
=
3
(6n-5)(6(n+1)-5)
=
1
2
(
1
6n-5
-
1
6n+1
)

故Tn=
n
i=1
bi
=
1
2
[(1-
1
7
)+(
1
7
-
1
13
)+…+(
1
6n-5
-
1
6n+1
)]
=
1
2
(1-
1
6n+1
).
因此,要使
1
2
(1-
1
6n+1
)<
m
20
(n∈N*)成立的m,必须且仅须满足
1
2
m
20
,即m≥10,
所以满足要求的最小正整数m为10.
点评:本题主要考查二次函数、等差数列、数列求和、不等式等基础知识和基本的运算技能,考查分析问题的能力和推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数y=f(x)(x∈R)的图象过点(0,-3),且f(x)>0的解集(1,3).
(1)求f(x)的解析式;
(2)求函数y=f(sinx),x∈[0,
π2
]
的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)图象的顶点是(-1,3),又f(0)=4,一次函数y=g(x)的图象过(-2,0)和(0,2).
(1)求函数y=f(x)和函数y=g(x)的解析式;
(2)求关于x的不等式f(x)>3g(x)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)的图象关于直线x=2对称,且在x轴上截得的线段长为2.若f(x)的最小值为-1,求:
(1)函数f(x)的解析式;
(2)函数f(x)在[t,t+1]上的最小值g(t).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)的图象如图所示:
(1)求函数y=f(x)的解析式;
(2)根据图象写出不等式f(x)>0的解集;
(3)若方程|f(x)|=k有两个不相等的实数根,根据函数图象及变换知识,求k的取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)=x2+bx+c的图象过点(1,13),且函数y=f(x-
12
)
是偶函数.
(1)求f(x)的解析式;
(2)已知t<2,g(x)=[f(x)-x2-13]•|x|,求函数g(x)在[t,2]上的最大值和最小值;
(3)函数y=f(x)的图象上是否存在这样的点,其横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案