精英家教网 > 高中数学 > 题目详情
9.已知f(x)=$\left\{\begin{array}{l}(4+2a)x-8,x<1\\{log_a}x\;\;,\;\;\;\;\;\;\;\;\;\;x≥1\end{array}$是R上的增函数,那么a的取值范围是1<a≤2.

分析 若f(x)=$\left\{\begin{array}{l}(4+2a)x-8,x<1\\{log_a}x\;\;,\;\;\;\;\;\;\;\;\;\;x≥1\end{array}$是R上的增函数,则$\left\{\begin{array}{l}4+2a>0\\ a>1\\ 4+2a-8≤0\end{array}\right.$,解得a的取值范围.

解答 解:∵f(x)=$\left\{\begin{array}{l}(4+2a)x-8,x<1\\{log_a}x\;\;,\;\;\;\;\;\;\;\;\;\;x≥1\end{array}$是R上的增函数,
∴$\left\{\begin{array}{l}4+2a>0\\ a>1\\ 4+2a-8≤0\end{array}\right.$,
解得:1<a≤2,
故答案为:1<a≤2

点评 本题考查的知识点是分段函数的应用,正确理解分段函数的单调性是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.函数f(x)=2x2-3|x|+1的单调递减区间是[0,$\frac{3}{4}$],(-∞,-$\frac{3}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.直线l过点P(1,4)分别交x轴的正方向和y轴正方向于A、B两点.
①当|OA|+|OB|最小时,求l的方程.
②当|PA|•|PB|最小时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ax3+bx2lnx,若f(x)在点(1,0)处的切线的斜率为2.
(1)求f(x)的解析式;
(2)求f(x)在[$\frac{1}{e}$,e]上的单调区间和最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求下列函数的定义域:
(1)f(x)=$\frac{1}{x+1}$   
(2)f(x)=$\frac{3{x}^{2}}{\sqrt{1-x}}$+$\sqrt{3x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=max+na-x(a>0且a≠1)为偶函数,则非零实数m,n满足(  )
A.m=-nB.m=nC.mn=1D.mn=-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若f(x)的定义域为{x∈R|x≠0},满足f(x)-2f($\frac{1}{x}$)=3x,则f(x)为(  )
A.偶函数B.奇函数C.既奇又偶函数D.非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},则
(1)求A∩B,A∪B;
(2)若集合C={x|x>a},满足C∪A=C时,求a的取值范围.(结果用区间或集合表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}|{\frac{10}{x}-2}|,0<x≤10\\-\frac{1}{2}x+6,x>10\end{array}$,若实数a、b、c满足:a<b<c,且f(a)=f(b)=f(c),则$\frac{abc}{a+b}$的取值范围是(  )
A.(10,12)B.(25,30)C.$(4,\frac{24}{5})$D.(25,+∞)

查看答案和解析>>

同步练习册答案