精英家教网 > 高中数学 > 题目详情
4.求下列函数的定义域:
(1)f(x)=$\frac{1}{x+1}$   
(2)f(x)=$\frac{3{x}^{2}}{\sqrt{1-x}}$+$\sqrt{3x+1}$.

分析 (1)直接由分式的分母不为0求得函数的定义域;
(2)由分式的分母不为0,根式内部的代数式大于等于0联立不等式组得答案.

解答 解:(1)要使原函数有意义,则x+1≠0,即x≠-1.
∴f(x)=$\frac{1}{x+1}$的定义域为(-∞,-1)∪(-1,+∞);   
(2)由$\left\{\begin{array}{l}{1-x>0}\\{3x+1≥0}\end{array}\right.$,解得$-\frac{1}{3}≤x<1$.
∴f(x)=$\frac{3{x}^{2}}{\sqrt{1-x}}$+$\sqrt{3x+1}$的定义域为[-$\frac{1}{3}$,1).

点评 本题考查函数的定义域及其求法,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知集合A={x|x2-2ax+4a2-3=0},集合B={x|x2-x-2=0},集合C={x|x2+2x-8=0}.
(1)若A∩B≠∅,A∩C=∅,求实数a的值;
(2)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.三棱锥A-BCD的四个顶点同在一个球O上,若AB⊥面BCD,BC⊥CD,AB=BC=CD=1,则球O的表面积等于3π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若k进制数175(k)化为十进制数是125,那么k=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知复数z1=$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$i和复数z2=cos60°+isin60°,则z1+z2为(  )
A.1B.-1C.$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$iD.$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x)=$\left\{\begin{array}{l}(4+2a)x-8,x<1\\{log_a}x\;\;,\;\;\;\;\;\;\;\;\;\;x≥1\end{array}$是R上的增函数,那么a的取值范围是1<a≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知n=$\frac{6}{π}$${∫}_{-1}^{1}$($\sqrt{1-{x}^{2}}$-2x)dx,则x(1-$\frac{2}{\sqrt{x}}$)n的展开式中的常数项为(  )
A.-60B.-50C.50D.60

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=ax在[0,1]上的最大值与最小值和为4,则函数y=ax-1在[0,1]上的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有f($\frac{{x}_{1}+{x}_{2}}{2}$)≤$\frac{1}{2}$[f(x1)+f(x2)],则称f(x)在[a,b]上具有性质P.设f(x)在[1,2015]上具有性质 P.现给出如下命题:
①f(x)在[1,2015]上不可能为一次函数;
②函数f(x2)在[1,$\sqrt{2015}$]上具有性质P;
③对任意x1,x2,x3,x4∈[1,2015],有f($\frac{{x}_{1}+{x}_{2}+{x}_{3}+{x}_{4}}{4}$)≤$\frac{1}{4}$[f(x1)+f(x2)+f(x3)+f(x4)];
④若f(x)在x=1008处取得最大值 2016,则f(x)=2016,x∈[1,2015].
其中真命题的序号是③④.

查看答案和解析>>

同步练习册答案