精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-bx2+2cx的导函数的图象关于直线x=2对称,
(Ⅰ)求b的值;
(Ⅱ)若函数f(x)无极值,求c的取值范围;
(Ⅲ)若f(x)在x=t处取得极小值,记此极小值为g(t),求g(t)的定义域和值域。
解:(Ⅰ)f′(x)=3x2-2bx+2c,
∵函数f′(x)的图象关于直线x=2对称,
,即b=6.
(Ⅱ)由(Ⅰ)知,f(x)=x3-6x2+2cx,
f′(x)=3x2-12x+2c=3(x-2)2+2c-12,
当c≥6时,f′(x)≥0,此时f(x)无极值。
(Ⅲ)当c<6时,f′(x)=0有两个互异实根x1,x2
不妨设x1<x2,则x1<2<x2
当x<x1时,f′(x)>0,f(x)在区间(-∞,x1)内为增函数;
当x1<x<x2时,f′(x)<0,f(x)在区间(x1,x2)内为减函数;
当x>x2时,f′(x)>0,f(x)在区间(x2,+∞)内为增函数,
所以f(x)在x=x1处取极大值,在x=x2处取极小值,
因此,当且仅当c<6时,函数f(x)在x=x2处存在唯一极小值,所以t=x2>2,
于是g(t)的定义域为(2,+∞),
由f′(t)=3t2-12t+2c=0,得2c=-3t2+12t,
于是g(t)=f(t)=t3-6t2+(-3t2+12t)t=-2t3+6t2,t∈(2,+∞),
当t>2时,g′(t)=-6t2+12t=-6t(t-2)<0,
所以函数g(t)在区间(2,+∞)内是减函数,故g(t)的值域为(-∞,8)。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案