精英家教网 > 高中数学 > 题目详情

已知数列数学公式
(I)求数列{an}的通项公式;
(II)设数列数学公式

(I)解:∵

∴{}是以=为首项,为公差的等差数列
=+=n
∴Sn=2n2
当n≥2时,an=Sn-Sn-1=4n-2;当n=1时,a1=2也满足
∴数列{an}的通项公式为an=4n-2;
(II)证明:由(I)知=
∴Tn=b1+b2+…+bn=(1-+-+-+…+)=)=)<
分析:(I)先证明{}是以=为首项,为公差的等差数列,可得Sn=2n2,利用当n≥2时,an=Sn-Sn-1,即可求数列{an}的通项公式;
(II)利用裂项法求和,即可证得结论.
点评:本题考查等差数列的证明,考查数列的通项与求和,考查不等式的证明,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的首项a1=5,前n项和为Sn,且Sn+1=2Sn+n+5(n∈N*
(I)证明数列{an+1}是等比数列;
(II)令f(x)=a1x+a2x2+…+anxn,求函数f(x)在点x=1处的导数f'(1)并比较2f'(1)与23n2-13n的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

20、若有穷数列a1,a2…an(n是正整数),满足a1=an,a2=an-1…an=a1即ai=an-i+1
(i是正整数,且1≤i≤n),就称该数列为“对称数列”.
(1)已知数列{bn}是项数为7的对称数列,且b1,b2,b3,b4成等差数列,b1=2,b4=11,试写出{bn}的每一项
(2)已知{cn}是项数为2k-1(k≥1)的对称数列,且ck,ck+1…c2k-1构成首项为50,公差为-4的等差数列,数列{cn}的前2k-1项和为S2k-1,则当k为何值时,S2k-1取到最大值?最大值为多少?
(3)对于给定的正整数m>1,试写出所有项数不超过2m的对称数列,使得1,2,22…2m-1成为数列中的连续项;当m>1500时,试求其中一个数列的前2008项和S2008

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•潍坊一模)已知数列{an}的各项排成如图所示的三角形数阵,数阵中每一行的第一个数a1,a2,a4,a7,…构成等差数列{bn},Sn是{bn}的前n项和,且b1=a1=1,S5=15.
( I )若数阵中从第三行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知a9=16,求a50的值;
(Ⅱ)设Tn=
1
Sn+1
+
1
Sn+2
+…+
1
S2n
,当m∈[-1,1]时,对任意n∈N*,不等式t3-2mt-
8
3
Tn
恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•潍坊一模)已知数列{an}的各项排成如图所示的三角形数阵,数阵中每一行的第一个数a1,a2,a4,a7,…构成等差数列{bn},Sn是{bn}的前n项和,且b1=a1=1,S5=15.
( I )若数阵中从第三行开始每行中的数按从左到右的顺序均构成公比为正数的等比数列,且公比相等,已知a9=16,求a50的值;
(Ⅱ)设Tn=
1
Sn+1
+
1
Sn+2
+…+
1
S2n
,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•杨浦区二模)(理)已知向量
a
=(x2+1,-x)
b
=(1,2
n2+1
)
(n为正整数),函数f(x)=
• 
,设f(x)在(0,+∞)上取最小值时的自变量x取值为an
(1)求数列{an}的通项公式;
(2)已知数列{bn},对任意正整数n,都有bn•(4an2-5)=1成立,设Sn为数列{bn}的前n项和,求
lim
n→∞
Sn

(3)在点列A1(1,a1)、A2(2,a2)、A3(3,a3)、…、An(n,an)、…中是否存在两点Ai,Aj(i,j为正整数)使直线AiAj的斜率为1?若存在,则求出所有的数对(i,j);若不存在,请你写出理由.

查看答案和解析>>

同步练习册答案