精英家教网 > 高中数学 > 题目详情
已知函数,且无实根,则下列命题中:
(1)方程一定无实根;
(2)若>0,则不等式对一切实数都成立;
(3)若<0,则必存在实数,使得
(4)若,则不等式对一切都成立。
其中正确命题的序号有           (写出所有真命题的序号)
⑴⑵⑷

分析:f[f(x)]为一个复合函数,可以把方括号里的f(x)看作为一个未知数t,t的范围就是f(x)的值域.由此入手进行判断,能够得到正确答案.
解答:解:f[f(x)]为一个复合函数,可以把方括号里的f(x)看作为一个未知数t,t的范围就是f(x)的值域.
(1):f[f(x)]可以看为f(t),而题中f(x)=x无实根,所以方程f[f(x)]=x无实根,故(1)成立;(2):和第一个一样的想法,依然把方括号里的f(x)看作为一个未知数t,则外层为一个开口向上的2次函数,
且f(x)=x无实根,所以a>0,则不等式f[f(x)]>x对一切实数x都成立,故(2)成立;(3):和2问同理,只不过a符号变了下,故(3)错误;(4):由条件得f(1)=0,把x=1代入里面得到了一个结论为c<1的结论,
这就说明若使(4)成立必有c<1,而满足大前提的c肯定是有可能取到小于1的数的,所以(4)对.
故答案为:(1)、(2)、(4).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

在函数的图象上,点与点关于轴对称,且在直线上,则函数在区间上           (   )
A.既没有最大值也没有最小值B.最小值为-3,无最大值
C.最小值为-3,最大值为9D.最小值为,无最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的定义域被分成了四个不同的单调区间,则实数的取值范围是   (  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数,则   (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则(    )
A.5B.0C.4D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知二次函数的图象如图所示,对称轴是,则下列结论中正确的是(  ).

A.    B.    C.   D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分10分)
设函数
(Ⅰ)不等式的解集为,求的值;
(Ⅱ)在(Ⅰ)的条件下,试求不等式的解集.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数在区间上递减,则的取值范围为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在上的函数,其中,函数的图像是一条连续曲线,则方程在下面哪个范围内必有实数根( )
A.B.C.D.

查看答案和解析>>

同步练习册答案