精英家教网 > 高中数学 > 题目详情

【题目】已知四棱锥P﹣ABCD的底面ABCD是等腰梯形,AB∥CD,且AC⊥BD,AC与BD交于O,PO⊥底面ABCD,PO=2,AB=2CD=2 ,E,F分别是AB,AP的中点.

(1)求证:AC⊥EF;
(2)求二面角F﹣OE﹣A的余弦值.

【答案】
(1)证明:由ABCD是等腰梯形,AB∥CD,且AC⊥BD,AC与BD交于O,可知:△OAB是等腰直角三角形,

∵AB=2CD=2 ,E是AB的中点,∴OE=EA=EB= ,可得OA=OB=2.

∵PO⊥底面ABCD,∴PO⊥OA,PO⊥OB.又OA⊥OB.

∴可以建立如图所示的空间直角坐标系.

则O(0,0,0),A(2,0,0),B(0,2,0),P(0,0,2),E(1,1,0),F(1,0,1).

,∴EF⊥AO,即EF⊥AC


(2)解:由(1)可知:

设平面OEF的法向量为

,得 ,令x=1,则y=z=﹣1.

∵PO⊥平面OAE,∴可取 作为平面OAE的法向量.

= = =

由图可知:二面角F﹣OE﹣A的平面角是锐角θ.

因此,


【解析】(1)通过建立空间直角坐标系,利用EF与AO的方向向量的数量积等于0,即可证明垂直;(2)利用两个平面的法向量的夹角即可得到二面角的余弦值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C:(a>0,b>0)的短轴长为2 , 且离心率e=
(Ⅰ)求椭圆C的方程;
(Ⅱ)设F1、F2是椭圆的左、右焦点,过F2的直线与椭圆相交于P、Q两点,求△F1PQ面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣alnx(a∈R).
(1)若曲线f(x)在(1,f(1))处的切线与直线y=﹣x+5垂直,求实数a的值.
(2)x0∈[1,e],使得 ≤0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求经过直线l1:x+3y-3=0,l2:x-y+1=0的交点且平行于直线2x+y-3=0的直线方程.

(2)求证:不论m取什么实数,直线(2m-1)x+(m+3)y-(m-11)=0都经过一个定点,并求出这个定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义行列式运算 =a1b2﹣a2b1 , 将函数f(x)= 的图象向左平移t(t>0)个单位,所得图象对应的函数为偶函数,则t的最小值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:动点P,Q都在曲线C: (t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点.
(1)求M的轨迹的参数方程;
(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足:f′(x)﹣f(x)=xex , 且f(0)= ,则 的最大值为(
A.0
B.
C.1
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,过右焦点作垂直于椭圆长轴的直线交椭圆于两点,且为坐标原点.

(1)求椭圆的方程;

(2) 设直线与椭圆相交于两点,若.

①求的值;

②求的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

时,求的值;

时,是否存在正整数nr,使得依次构成等差数列?并说明理由;

时,求的值m表示

查看答案和解析>>

同步练习册答案