精英家教网 > 高中数学 > 题目详情
已知函数 f(x)=
1
2
x2-mlnx+(m-1)x
,m∈R.
(Ⅰ)若函数 f(x)在x=2处有极值,求m 的值;
(Ⅱ)当 m≤0时,讨论函数 f(x)的单调性;
(Ⅲ)求证:当 m=-2时,对任意的 x1,x2∈(0,+∞),且x1≠x2,有
f(x2)-f(x1)
x2-x1
>-1
分析:(Ⅰ)由x=2是函数的一个极值点,可得到x=2是f′(x)=0的根,从而求出m;
(Ⅱ)函数f(x)的定义域为(0,+∞),分类讨论m,判断f'(x)的符号,进而得到f(x)的单调区间;
(Ⅲ)当 m=-2时,对任意的 x1,x2∈(0,+∞),且x1≠x2,要证明
f(x2)-f(x1)
x2-x1
>-1

即证明f(x1)-f(x2)>x1-x2,即证f(x1)+x1<f(x2)+x2
故我们可以构造辅助函数g(x)=f(x)+x,通过讨论辅助函数g(x)=f(x)+x的单调性证明结论.
解答:解:(Ⅰ)f′(x)=x-
m
x
+m-1

∵函数 f(x)在x=2处有极值∴f′(2)=2-
m
2
+m-1=0

∴m=-2,经检验m=-2符合题意.∴m=-2.
(Ⅱ)∵f′(x)=x-
m
x
+m-1
=
x2+(m-1)x-m
x
=
(x-1)(x+m)
x

∴(1)当-1<m≤0时,若x∈(0,-m)时,f′(x)>0,f(x)为增函数;
当x∈(-m,1)时,f'(x)<0,f(x)为减函数;
当x∈(1,+∞)时,f'(x)>0,f(x)为增函数.
(2)当m=-1时,f′(x)=
(x-1)2
x
≥0
,f(x)在(0,+∞)上为增函数.
(3)当m<-1即-m>1时,x∈(0,1)时,f'(x)>0,f(x)为增函数;
当x∈(1,-m)时,f'(x)<0,f(x)为减函数;
当x∈(-m,+∞)时,f'(x)>0,f(x)为增函数.
(Ⅲ)当m=-2时,函数f(x)=
1
2
x2+2lnx-3x.
构造辅助函数g(x)=f(x)+x,并求导得
g'(x)=x+
2
x
-2=
x2-2x+2
x
=
(x-1)2+1
x

∴g'(x)>0,g(x)为增函数.
∴对任意0<x1<x2,都有g(x1)<g(x2)成立,
即f(x1)+x1<f(x2)+x2
即f(x1)-f(x2)>x1-x2
又∵x1-x2<0,
f(x2)-f(x1)
x2-x1
>-1
(14分)
点评:本题考查导数的综合应用,函数单调性的求法.解题时要认真审题,仔细解答,注意等价转化思想和分类讨论思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案