精英家教网 > 高中数学 > 题目详情
已知全集U=R,集合M={x|x>2},N={x|
1
2
<log2x<2},P={x|x≤a-1}.
(1)求如图阴影部分表示的集合;
(2)若N⊆P,求实数a的取值范围.
考点:Venn图表达集合的关系及运算
专题:集合
分析:(1)根据Venn图,得到集合关系为N∩(∁UM),然后根据集合的基本运算求解即可.
(2)根据集合关系即可得到结论.
解答: 解:(1)由Venn图,得到阴影部分对应的集合为N∩(∁UM),
∵M={x|x>2或x<-2},
∴(∁UM)={x|x≤2},
∵N={x|
1
2
<log2x<2}={x|
2
<x<4
},
∴N∩(∁UM)={x|
2
<x<4
}∩{x|x≤2}={x|
2
<x≤2
}.
(2)∵N⊆P,∴a-1≥4,即a≥5,
故实数a的取值范围[5,+∞).
点评:本题主要考查集合的基本运算,利用Venn图确定集合关系是解决本题的关键,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ex(ax+b)-ex2,曲线y=f(x)在点(0,f(0))处的切线方程为y=-2.
(1)求a,b的值;
(2)求函数y=f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)log2(47×25);    (2)lg
5100
;    (3)log26-log23;     (4)log2(log216).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=logax+b(a>0,a≠1),x∈[1,9]的图象经过点(3,2),且它的反函数图象经过点(3,9).
(1)求a,b的值;
(2)设g(x)=f2(x)+f(x2),求值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax+2,g(x)=ax+2
(1)若关于x的方程f(x)=g(x)在(1,2)内恰有一解,求a的取值范围;
(2)设h(x)=
f(x),f(x)≥g(x)
g(x),f(x)<g(x)
,求h(x)的最小值;
(3)定义:已知函数T(x)在[m,n](m<n)上的最小值为t,若t≤m恒成立,则称函数T(x)在[m,n](m<n)上具有“DK”性质.如果f(x)在[a,a+1]上具有“DK”性质,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(x,y)(x,y∈R)为平面上点M的坐标.
(1)设集合P={-4,-3,-2,0},Q={0,1,2},从集合P中随机取一个数作为x,从集合Q中随机取一个数作为y,求点M在y轴上的概率;
(2)设x∈[0,3],y∈[0,4],求点M落在不等式组:
x+2y-3≤0
x≥0
y≥0
所表示的平面区域内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式
x+1
2-x
<0的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ex(sinx-cosx),若0≤x≤4π,则函数f(x)的各极大值之和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若四边形ABCD是矩形,G是矩形的中心,P为空间任意一点,令
PA
=
a
PB
=
b
PC
=
c
PD
=
d
,则用
a
b
c
d
表示向量
PG
,可得
PG
=
 

查看答案和解析>>

同步练习册答案