【题目】如图所示,一座小岛距离海岸线上最近的P点的距离是2km,从P点沿海岸正东12km处有一个城镇.假设一个人驾驶的小船的平均速度为
,步行的速度为
,时间t(单位:h)表示他从小岛到城镇的时间,x(单位:km)表示此人将船停在海岸处距P点的距离.设![]()
,则( )
![]()
A.函数
为减函数B.![]()
C.当
时,此人从小岛到城镇花费的时间最少D.当
时,此人从小岛到城镇花费的时间不超过3h
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为
,(θ为参数),以原点为极点,x轴非负半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)在平面直角坐标系xOy中,A(﹣2,0),B(0,﹣2),M是曲线C上任意一点,求△ABM面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设A,B两点的坐标分别为(﹣1,0),(1,0).条件甲:A、B、C三点构成以∠C为钝角的三角形;条件乙:点C的坐标是方程x2+2y2=1(y≠0)的解,则甲是乙的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某中学学生对《中华人民共和国交通安全法》的了解情况,调查部门在该校进行了一次问卷调查(共12道题),从该校学生中随机抽取40人,统计了每人答对的题数,将统计结果分成
,
,
,
,
,
六组,得到如下频率分布直方图.
![]()
(1)若答对一题得10分,未答对不得分,估计这40人的成绩的平均分(同一组中的数据用该组区间的中点值作代表);
(2)若从答对题数在
内的学生中随机抽取2人,求恰有1人答对题数在
内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,圆
的普通方程为
.在以坐标原点为极点,
轴正半轴为极轴的极坐标系中,直线
的极坐标方程为
.
(1)写出圆
的参数方程和直线
的直角坐标方程;
(2)设点
在
上,点Q在
上,求
的最小值及此时点
的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设中心在原点O,焦点在x轴上的椭圆C过点
,F为C的右焦点,⊙F的方程为![]()
(1)求C的方程;
(2)若直线![]()
与⊙O相切,与⊙F交于M、N两点,与C交于P、Q两点,其中M、P在第一象限,记⊙O的面积为
,求
取最大值时,直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱
中,
,顶点
在底面
上的射影恰为点
,且![]()
![]()
(1)证明:平面![]()
平面
;
(2)求棱
与
所成的角的大小;
(3)若点
为
的中点,并求出二面角
的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,已知椭圆
:
的离心率
,左顶点为
,过点
作斜率为
的直线
交椭圆
于点
,交
轴于点
.
![]()
(1)求椭圆
的方程;
(2)已知
为
的中点,是否存在定点
,对于任意的
都有
,若存在,求出点
的
坐标;若不存在说明理由;
(3)若过
点作直线
的平行线交椭圆
于点
,求
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com