精英家教网 > 高中数学 > 题目详情
16.已知平面向量$\overrightarrow{a}$=(x,1),$\overrightarrow{b}$=(2,-3),如果$\overrightarrow a∥\overrightarrow b$,那么x=(  )
A.$\frac{3}{2}$B.-$\frac{3}{2}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

分析 根据平面向量的坐标表示与共线定理,列出方程求出x的值.

解答 解:平面向量$\overrightarrow{a}$=(x,1),$\overrightarrow{b}$=(2,-3),且$\overrightarrow a∥\overrightarrow b$,
∴-3x-1×2=0,
解得x=-$\frac{2}{3}$.
故选:D.

点评 本题考查了平面向量的坐标表示与共线定理的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在△ABC中,角A、B、C所对的边分别为a、b、c,已知a=6,sinA=$\frac{\sqrt{3}}{3}$,B=A+$\frac{π}{2}$;
(1)求b的值;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设等比数列{an}的公比为q,其前项之积为Tn,并且满足条件:${a_1}>1,{a_{2015}}{a_{2016}}>1,\frac{{{a_{2015}}-1}}{{{a_{2016}}-1}}<0$.给出下列结论:(1)0<q<1;(2)a2015a2017-1>0;(3)T2016的值是Tn中最大的(4)使Tn>1成立的最大自然数等于4030.其中正确的结论为(  )
A.(1),(3)B.(2),(3)C.(1),(4)D.(2),(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.连续抛掷同一颗均匀的骰子,令第i次得到的点数为ai,若存在正整数k,使a1+a2+…+ak=6,则称k为你的幸运数字.
(1)求你的幸运数字为3的概率;
(2)若k=1,则你的得分为5分;若k=2,则你的得分为3分;若k=3,则你的得分为1分;若抛掷三次还没找到你的幸运数字则记0分,求得分X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在三角形ABC中,角角A,B,C所对的边分别为a,b,c,且a+c=2b=2,a=2sinA,则此三角形的面积S△ABC=$\frac{1}{4}$(6-3$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.M是$\frac{{x}^{2}}{4}$$+\frac{{y}^{2}}{3}$=1上的动点,已知点F(1,0)、P(3,1),则2|MF|-|MP|的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.同时抛掷2个骰子,其点数之和为6的概率为(  )
A.$\frac{1}{9}$B.$\frac{1}{6}$C.$\frac{1}{12}$D.$\frac{5}{36}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2-x+1+alnx.
(1)当a=1时,求曲线y=(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)有两个极值点x1,x2,且x1<x2,求证:f(x2)<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\sqrt{|x-2|+|x+5|-m}$的定义域为R.
(Ⅰ)求实数m的取值范围;
(Ⅱ)若m=4,解不等式f(x)>2.

查看答案和解析>>

同步练习册答案