精英家教网 > 高中数学 > 题目详情
4.连续抛掷同一颗均匀的骰子,令第i次得到的点数为ai,若存在正整数k,使a1+a2+…+ak=6,则称k为你的幸运数字.
(1)求你的幸运数字为3的概率;
(2)若k=1,则你的得分为5分;若k=2,则你的得分为3分;若k=3,则你的得分为1分;若抛掷三次还没找到你的幸运数字则记0分,求得分X的分布列和数学期望.

分析 (1)设“连续抛掷k次骰子的和为6”为事件A,则它包含事件A1,A2,A3,其中,A1:三次恰好均为2;A2:三次恰好1,2,3各一次;A3:三次中有两次均为1,一次为4,由此利用互斥事件概率加法公式能求出你的幸运数字为3的概率.
(2)由已知得X的可能取值为6,4,2,0,分别求出相应的概率,由此能求出X的分布列和EX.

解答 解:(1)设“连续抛掷k次骰的和为6”为事件A,则它包含事件A1,A2,A3
其中,A1:三次恰好均为2;A2:三次恰好1,2,3各一次;A3:三次中有两次均为1,一次为4,
A1,A2,A3为互斥事件,
∴你的幸运数字为3的概率:
P(A)=P(A1)+P(A2)+P(A3
=${C}_{3}^{3}(\frac{1}{6})^{3}+{C}_{3}^{1}•\frac{1}{6}•{C}_{2}^{1}•\frac{1}{6}•{C}_{1}^{1}•\frac{1}{6}$+${C}_{3}^{2}(\frac{1}{6})^{2}•\frac{1}{6}$=$\frac{5}{108}$.
(2)由已知得X的可能取值为5,3,1,0,
P(X=5)=$\frac{1}{6}$,
P(X=3)=$(\frac{1}{6})^{2}+{C}_{2}^{2}•\frac{1}{6}•\frac{1}{6}+{C}_{2}^{1}•\frac{1}{6}•\frac{1}{6}$=$\frac{5}{36}$,
P(X=1)=${C}_{3}^{3}(\frac{1}{6})^{3}+{C}_{3}^{1}•\frac{1}{6}•{C}_{2}^{1}•\frac{1}{6}•{C}_{1}^{1}•\frac{1}{6}$+${C}_{3}^{2}(\frac{1}{6})^{2}•\frac{1}{6}$=$\frac{5}{108}$,
P(X=0)=1-$\frac{1}{6}-\frac{5}{36}-\frac{5}{108}$=$\frac{35}{54}$,
∴X的分布列为:

 X531 0
 P $\frac{1}{6}$ $\frac{5}{36}$ $\frac{5}{108}$ $\frac{35}{54}$
EX=$5×\frac{1}{6}+3×\frac{5}{36}+1×\frac{5}{108}+0×\frac{35}{54}$=$\frac{35}{27}$.

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意互斥事件概率加法公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=(x+a)lnx+b,曲线y=f(x)在点(1,f(1))处的切线方程为x+y-2=0
(1)求y=f(x)的解析式;
(2)证明:$\frac{f(x)-1}{x-{e}^{x}}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.用数字0,1,2,3,5组成42个没有重复数字的五位偶数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若p和q为质数,且5p+3q=91,则p=17,q=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=logacos(2x-$\frac{π}{3}$)(其中a>0,且a≠1).
(1)求它的定义域;
(2)求它的单调区间;
(3)判断它的奇偶性;
(4)判断它的周期性,如果是周期函数,求出它的周期.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知偶函数f(x)在区间[0,+∞)单调递增,则满足f(2x-1)<f($\frac{1}{3}$)的x 取值范围是(  )
A.($\frac{1}{3}$,$\frac{2}{3}$)B.[$\frac{1}{3}$,$\frac{2}{3}$)C.($\frac{1}{2}$,$\frac{2}{3}$)D.[$\frac{1}{2}$,$\frac{2}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知平面向量$\overrightarrow{a}$=(x,1),$\overrightarrow{b}$=(2,-3),如果$\overrightarrow a∥\overrightarrow b$,那么x=(  )
A.$\frac{3}{2}$B.-$\frac{3}{2}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=xlnx,g(x)=f(x)+f(m-x),m>0.
(1)求函数g(x)的定义域;
(2)求g(x)的单调区间;
(3)若a>0,b>0,证明:f(a)+(a+b)1n2≥f(a+b)-f(b).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}的公差d=2,a2是a1与a4的等比中项,n∈N*
(1)求数列{an}的通项公式;
(2)若bn=a${\;}_{\frac{n(n+1)}{2}}$,Tn=-b1+b2-b3+b4+…(-1)nbn,求Tn
(3)记Sn为{$\frac{1}{|{T}_{n}|}$}的前n项和,证明Sn>$\frac{n}{n+2}$.

查看答案和解析>>

同步练习册答案