精英家教网 > 高中数学 > 题目详情
定义等积数列{an}:若an•an-1=p(p为非零常数,n≥2),则称{an}为等积数列,p称为公积.若{an}为等积数列,公积为1,首项为a,则a2007=    ,S2007=   
【答案】分析:根据题意列出anan+1=1(n∈N+),求出数列{an}的通项公式,再求该数列的前2007项和.
解答:解:由题意得,anan+1=1(n∈N+),且a1=a
∴a2=,a3=a,a4=,a5=a,a6=
∴an=
∴a2007=a,
当n是奇数时,数列的奇数项数是1004,偶数项数是1003,
则数列的前2007项和S2007=1004a+
故答案为:a,1004a+
点评:此题的思想方法要抓住给出的信息,观察数列的规律,总结出项数与项之间的关系,求出通项公式,求数列前n项和时需要分类讨论,一定清楚奇数项数与偶数项数,否则容易出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义“等积数列”:在一个数列中,如果每一个项与它的后一项的积都为同一个常数,那末这个数列叫做等积数列,这个常数叫做该数列的公积.已知数列{an}是等积数列,且a1=2,公积为5,Tn为数列{an}前n项的积,则T2011=
51006
2
51006
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•广州模拟)定义等积数列{an}:若an•an-1=p(p为非零常数,n≥2),则称{an}为等积数列,p称为公积.若{an}为等积数列,公积为1,首项为a,则a2007=
a
a
,S2007=
1004a+
1003
a
1004a+
1003
a

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•温州一模)定义“等积数列”:在一个数列中,如果每一项和它的后一项的积都为同一个常数,那么这个数列叫做等积数列.这个常数叫做等积数列的公积.已知{an}是等积数列,且a1=1,公积为2,则这个数列的前n项的和Sn=
3n
2
,n是正偶数
3n-1
2
,n是正奇数
3n
2
,n是正偶数
3n-1
2
,n是正奇数

查看答案和解析>>

科目:高中数学 来源:广州模拟 题型:填空题

定义等积数列{an}:若an•an-1=p(p为非零常数,n≥2),则称{an}为等积数列,p称为公积.若{an}为等积数列,公积为1,首项为a,则a2007=______,S2007=______.

查看答案和解析>>

同步练习册答案