精英家教网 > 高中数学 > 题目详情

已知函数的图象与的图象关于直线对称,则( )

A. B. C. D.

 

C

【解析】

试题分析:由于函数)与函数)关于直线对称,因此,故选C.

考点:反函数的概念

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年广东省广州市毕业班综合测试二理科数学试卷(解析版) 题型:填空题

已知四边形是边长为的正方形,若,则的值为.

已知四边形是边长为的正方形,若,则的值为.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省东莞市高三第二次模拟考试理科数学试卷(解析版) 题型:填空题

已知函数,则的值等于 .

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省东莞市高三第二次模拟考试文科数学试卷(解析版) 题型:解答题

已知函数.

(1)求的值;

(2)求的最大值和最小正周期;

(3)若是第二象限的角,求.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省东莞市高三第二次模拟考试文科数学试卷(解析版) 题型:选择题

,则点必在( )

A.直线的左下方

B.直线的右上方

C.直线的右上方

D.直线的左下方

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省东莞市高三模拟(一)理科数学试卷(解析版) 题型:解答题

已知函数

(1)若,求曲线在点处的切线方程;

(2)求的极值;

(3)若函数的图象与函数的图象在区间上有公共点,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省东莞市高三模拟(一)理科数学试卷(解析版) 题型:填空题

请阅读下列材料:若两个正实数a1,a2满足,那么.

证明:构造函数,因为对一切实数x,恒有,所以 ,从而得,所以.

根据上述证明方法,若n个正实数满足时,你能得到的结论为 .(不必证明)

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省东莞市高三模拟(一)文科数学试卷(解析版) 题型:解答题

对某电子元件进行寿命追踪调查,所得情况如右频率分布直方图.

(1)图中纵坐标处刻度不清,根据图表所提供的数据还原

(2)根据图表的数据按分层抽样,抽取个元件,寿命为之间的应抽取几个;

(3)从(2)中抽出的寿命落在之间的元件中任取个元件,求事件“恰好有一个寿命为,一个寿命为”的概率.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省青岛市高三4月统一质量检测考试文科数学试卷(解析版) 题型:解答题

如图,在四棱锥中,底面为正方形,

平面,已知为线段的中点.

(1)求证:平面

(2)求四棱锥的体积.

 

 

查看答案和解析>>

同步练习册答案