分析 原式=$\frac{1}{9}$$(9+99+…+\underset{\underbrace{99…9}}{n个9})$=$\frac{1}{9}$[(10-1)+(102-1)+…+(10n-1)],再利用等比数列的求和公式即可得出.
解答 解:原式=$\frac{1}{9}$$(9+99+…+\underset{\underbrace{99…9}}{n个9})$
=$\frac{1}{9}$[(10-1)+(102-1)+…+(10n-1)]
=$\frac{1}{9}$$[\frac{10(1{0}^{n}-1)}{10-1}-n]$
=$\frac{{{{10}^{n+1}}-9n-10}}{81}$.
故答案为:$\frac{{{{10}^{n+1}}-9n-10}}{81}$.
点评 本题考查了等比数列的求和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=1,y=x0 | B. | $y=x\;,\;y=\root{3}{x^3}$ | ||
| C. | $y=\sqrt{x-1}•\sqrt{x+1}\;,\;y=\sqrt{{x^2}-1}$ | D. | $y=|x|\;,\;y={(\sqrt{x})^2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({-1,\frac{1}{2}})$ | B. | $({-∞,\frac{1}{2}})$ | C. | $({\frac{1}{2},2})$ | D. | $[{-1,\frac{1}{2}})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com