精英家教网 > 高中数学 > 题目详情
10.下列各组函数中,表示同一函数的是(  )
A.y=1,y=x0B.$y=x\;,\;y=\root{3}{x^3}$
C.$y=\sqrt{x-1}•\sqrt{x+1}\;,\;y=\sqrt{{x^2}-1}$D.$y=|x|\;,\;y={(\sqrt{x})^2}$

分析 分别求出四个答案中两个函数的定义域,然后判断是否一致,进而化简函数的解析式,再比较是否一致,根据两个函数的定义域和解析式均一致,则两函数表示同一函数,否则两函数不表示同一函数得到答案.

解答 解:A:y=1,x∈R,y=x0=1,x≠0,两个函数的定义域不一致,故A错误;
B:y=x,x∈R,y=$\root{3}{{x}^{3}}$=x,x∈R,两个函数的定义域一致,故B正确;
C:$y=\sqrt{x-1}•\sqrt{x+1}$,(x≥1),$y=\sqrt{{x}^{2}-1}$,(x≥1或x≤-1),两函数的定义域不同,不为同一函数,故C错误;
D:y=|x|,(x∈R),y=$(\sqrt{x})^{2}$=x,(x≥0),它们的定义域不同,不是同一函数,故D错误.
∴各组函数中,表示同一函数的是:B.
故选:B.

点评 本题考查的知识点是判断两个函数是否表示同一函数,熟练掌握同一函数的定义,即两个函数的定义域和解析式均一致或两个函数的图象一致,是解答本题的关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知曲线C1的极坐标方程为ρ=2$\sqrt{2}$sin($θ+\frac{π}{4}$),直线C的极坐标方程为ρsinθ=1,射线θ=φ,θ=$\frac{π}{4}$+φ(φ∈[0,π])与曲线C1分别交异于极点O的两点A,B.
(I)把曲线C1和C2化成直角坐标方程,并求直线C2被曲线C1截得的弦长;
(II)求|OA|2+|OB|2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.$1+11+111+…+\underbrace{11111…1}_{n个1}$之和是$\frac{{{{10}^{n+1}}-9n-10}}{81}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={-1,0,1},B={1,2},则A∪B等于(  )
A.{0,1}B.{1}C.{-1,0,1,2}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求值:$\frac{1}{\sqrt{2}-1}$-($\frac{3}{5}$)0+($\frac{9}{4}$)-0.5+$\root{4}{(\sqrt{2}-2)^{4}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$f(x)=\frac{sinx}{1+cosx}$,x∈(-π,0).当f'(x0)=2时,x0等于(  )
A.$\frac{2π}{3}$B.$-\frac{2}{3}π$C.$-\frac{π}{3}$D.$-\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设集合$A=\{x|{2}^{{x}^{2}}<{2}^{2x+3}\}$,B={x|(x-2)(x-4)<0};求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=(2-a)lnx+$\frac{1}{x}$+2ax.
(1)当a=2时,求函数f(x)的极值;
(2)当a<0时,求函数f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,角A.B、C的对边分别为a,b,c,若2a=3b,则$\frac{9si{n}^{2}B-si{n}^{2}A}{si{n}^{2}A}$=(  )
A.2B.3C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案