精英家教网 > 高中数学 > 题目详情
15.已知$f(x)=\frac{sinx}{1+cosx}$,x∈(-π,0).当f'(x0)=2时,x0等于(  )
A.$\frac{2π}{3}$B.$-\frac{2}{3}π$C.$-\frac{π}{3}$D.$-\frac{π}{6}$

分析 首先求得f'(x)=$\frac{1}{1+cosx}$,然后根据f'(x0)=2进行解答.

解答 解:由$f(x)=\frac{sinx}{1+cosx}$,得:
f'(x)=$\frac{(sinx)′(1+cosx)-sinx(1+cosx)′}{(1+cosx)^{2}}$
=$\frac{cosx+co{s}^{2}x+si{n}^{2}x}{(1+cosx)^{2}}$=$\frac{1+cosx}{(1+cosx)^{2}}$=$\frac{1}{1+cosx}$.
所以f'(x0)=$\frac{1}{1+cos{x}_{0}}$=2,
所以cosx0=-$\frac{1}{2}$,
因为x∈(-π,0).
所以x=-$\frac{2}{3}$π.
故选B.

点评 本题主要考察了同角三角函数关系式,考查计算能力,属于基础题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知定义域为R的函数f(x)满足f(1)=3,且f(x)的导数f′(x)<2x+1,则不等式f(3x)≥9x2+3x+1的解集为(-∞,$\frac{1}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数y=tanx与y=2sin(2x+φ)(0<φ<π),且它们的图象有一个横坐标为$\frac{π}{4}$的交点,则ϕ值为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)在极坐标系中,求过极点,倾斜角是$\frac{π}{3}$的直线的极坐标方程
(2)在极坐标系中,求圆心在$({3,\frac{π}{2}})$,半径为3的圆的极坐标方程
(3)曲线C的极坐标方程为:ρ=2cosθ-4sinθ,求曲线C的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列各组函数中,表示同一函数的是(  )
A.y=1,y=x0B.$y=x\;,\;y=\root{3}{x^3}$
C.$y=\sqrt{x-1}•\sqrt{x+1}\;,\;y=\sqrt{{x^2}-1}$D.$y=|x|\;,\;y={(\sqrt{x})^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列4个命题:
①命题“若x2-x=0,则x=1”的逆否命题为“若x≠1,则x2-x≠0”;
②若“?p或q”是假命题,则“p且?q”是真命题;
③若p:x(x-2)≤0,q:log2x≤1,则p是q的必要不充分条件;
④若命题p:存在x∈R,使得2x<x2,则?p:任意x∈R,均有2x≥x2
其中正确命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设{an}是公比为正数的等比数列,若a1=1,a5=16,则s7=127.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}{(a-2)x,x≥2}\\{(\frac{1}{2})^{x}-1,x<2}\end{array}\right.$,满足对任意的实数x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,则实数a的取值范围为(  )
A.(-∞,2)B.[$\frac{13}{4}$,2)C.[$\frac{13}{8}$,2)D.(-∞,$\frac{13}{8}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某部队为了在大阅兵中树立军队的良好形象,决定从参训的12名男兵和18名女兵中挑选出正式阅兵人员,这30名军人的身高如图:单位:cm
若身高在175cm(含175cm)以上,定义为“高个子”,身高在175cm以下,定义为“非高个子”,且只有“女高个子”才能担任“护旗手”.
(1)如果用分层抽样的方法从“高个子”和“非高个子”中选定5名军人,分别抽“高个子”和“非高个子”各多少人?
(2)如果用分层抽样的方法从“高个子”和“非高个子”中共选定了5名军人,再从这5人中任选2人,那么至少有1人是“高个子”的概率是多少?
(3)如果从选定的3名“男高个子”和2名“女高个子”中任选2名军人,求所选这2名军人中恰有1人能担任“护旗手”的概率.

查看答案和解析>>

同步练习册答案