精英家教网 > 高中数学 > 题目详情

【题目】已知方程x2y22(m3)x2(14m2)y16m490表示一个圆.

(1) 求实数m的取值范围;

(2) 求该圆半径r的取值范围;

(3) 求该圆心的纵坐标的最小值.

【答案】(1);(2);(3)-1.

【解析】试题分析:1)利用方程表示圆的条件D2+E2-4F>0,建立不等式,即可求出实数m的取值范围;
2)利用圆的半径,,利用配方法结合(1)中实数m的取值范围,即可求出该圆半径r的取值范围;
(3)根据x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0,确定圆的圆心坐标,再消去参数,得y4(x3)21根据(1)中实数m的取值范围,即可求得最小值..

试题解析:

(1) 方程表示圆的等价条件是D2E24F>0即有4(m3)24(14m2)24(16m49)>0

解得-<m<1.

(2) 半径

解得.

(3) 设圆心坐标为(xy)消去my4(x3)21.

由于所以.

故圆心的纵坐标y4(x3)21 所以最小值是-1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的空间几何体中,平面平面是边长为2的等边三角形,平面所成的角,且点E平面上的射落在的平分线上.

(1)求证:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海关对同时从三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.

地区

数量

50

150

100

1)求这6件样品中来自各地区商品的数量;

2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线经过点A (1,0).

(1)若直线与圆C相切,求直线的方程;

(2)若直线与圆C相交于PQ两点,求三角形CPQ面积的最大值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为上异于原点的任意一点,过点的直线于另一点,交轴的正半轴于点,且有.当点的横坐标为3时,为正三角形.

(1)求的方程;

(2)延长交抛物线于点,过点作抛物线的切线,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线l的方程为(a+1)x+y+2-a=0(aR).

1若l在两坐标轴上的截距相等,求l的方程;

2若l不经过第二象限,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为平行四边形, 为侧棱的中点.

(Ⅰ)求证: ∥平面

(Ⅱ)若,,

求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧面均为正方形,,点是棱的中点.请建立适当的坐标系,求解下列问题:

(Ⅰ)求证:异面直线互相垂直;

(Ⅱ)求二面角(钝角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】曲线上任意一点M满足, 其中F (-F (抛物线的焦点是直线yx-1与x轴的交点, 顶点为原点O.

(I)求 的标准方程;

(II)请问是否存在直线l满足条件:① 过的焦点;② 与交于不同两点 且满足?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案