精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=$\frac{x+2}{x-6}$,f(4)=-3.

分析 直接利用函数的解析式求解函数值即可.

解答 解:∵函数f(x)=$\frac{x+2}{x-6}$,
∴f(4)=$\frac{4+2}{4-6}$=-3.
故答案为:-3.

点评 本题考查函数的解析式的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.至少用两种方法解不等式|x-1|>4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.椭圆$\frac{x^2}{4}$+$\frac{y^2}{9}$=1与曲线$\frac{x^2}{9-k}$+$\frac{{y{\;}^2}}{4-k}$=1(0<k<4)的关系是(  )
A.有相等的焦距,又有相同的焦点B.有相等的焦距,但是不同的焦点
C.有不相等的焦距,又是不同的焦点D.有不相等的焦距,但有相同的焦点

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在区间[1,3]上任取一个实数x,则1.5≤x≤2的概率等于(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,将得到的点数分别记为a,b.
(Ⅰ)求直线ax+by+5=0与圆x2+y2=1有公共点的概率;
(Ⅱ)求方程组$\left\{{\begin{array}{l}{ax+by=3}\\{x+2y=2}\end{array}}\right.$只有正数解的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若实数x,y满足x2+y2=4,则$\frac{xy}{x+y+4}$的取值范围是$[2\sqrt{3}\;-4,\;\;1+\frac{{\sqrt{2}}}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}{(5-a)x+a-6,x≤4}\\{2{a}^{x-3},x>4}\end{array}\right.$,数列{an}满足an=f(n)(n∈N+),且数列{an}是单调递增数列,则实数a的取值范围是(  )
A.(1,5)B.(2,5)C.($\frac{14}{5}$,5)D.[$\frac{14}{5}$,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知长方体ABCD-A1B1C1D1中,AB=AD=4,AA1=8,求异面直线A1B与C1D所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知圆C1:(x+2)2+y2=1,圆C2:x2+y2-4x-77=0,动圆P与圆C1外切,与圆C2内切,则动圆圆心的轨迹方程是$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{21}=1$.

查看答案和解析>>

同步练习册答案