£¨2003•¶«³ÇÇø¶þÄ££©ÒÑÖªÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÕûÊý£¬ÇÒÂú×ãan+1=an2-2nan+2£¬£¨n¡ÊN£©£¬ÓÖa5=11£®
£¨¢ñ£©Çóa1£¬a2£¬a3£¬a4µÄÖµ£¬²¢ÓÉ´ËÍÆ²â³ö{an}µÄͨÏʽ£¨²»ÒªÇóÖ¤Ã÷£©£»
£¨¢ò£©Éèbn=11-an£¬Sn=b1+b2+¡­+bn£¬Sn¡ä=|b1|+|b2|+¡­+|bn|£¬Çó
lim
n¡ú¡Þ
Sn
Sn¡ä
掙术
£¨¢ó£©ÉèCn=
1
n(1+an)
£¨n¡ÊN£©£¬Tn=C1+C2+¡­+Cn£¬ÊÇ·ñ´æÔÚ×î´óµÄÕûÊým£¬Ê¹µÃ¶ÔÈÎÒân¡ÊN£¬¾ùÓÐTn£¾
m
32
£¿Èô´æÔÚ£¬Çó³ömµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨¢ñ£©¸ù¾Ýan+1=an2-2nan+2£¬£¨n¡ÊN£©£¬a5=11Çó³öa4µÄÖµ£¬È»ºóͬÀíÇó³öa3£¬a2£¬a1µÄÖµ£»
£¨¢ò£©Ïȸù¾ÝµÈ²îÊýÁÐÇóºÍ¹«Ê½Çó³öSn£¬È»ºóÅжÏ{bn}Äļ¸ÏîΪ·Ç¸ºÊý£¬ÔÙ·ÖÀàÌÖÂÛ£¬¼´¿ÉÇóµÃSn¡äµÄÖµ£¬È»ºóÀûÓü«ÏÞµÄ֪ʶÇó½â¼´¿É£»
£¨¢ó£©ÇóµÃÊýÁеÄͨÏÀûÓÃÁÑÏî·¨ÇóºÍ£¬Çó³ö×îСֵ£¬ÔٽⲻµÈʽ£¬¼´¿ÉµÃµ½½áÂÛ£®
½â´ð£º½â£º£¨¢ñ£©ÓÉa5=11£¬µÃ11=a42-8a4+2¼´a42-8a4-9=0£®
½âµÃ  a4=9»òa4=-1£¨Éᣩ£®£¨1·Ö£©
ÓÉa4=9£¬a32-6a3-7=0½âµÃa3=7»òa3=-1£¨Éᣩ£¨2·Ö£©
ͬÀí¿ÉÇó³ö  a2=5£¬a1=3£®£¨4·Ö£©
ÓÉ´ËÍÆ²âanµÄÒ»¸öͨÏʽ£ºan=2n+1£¨n¡ÊN£©£®£¨5·Ö£©
£¨¢ò£©bn=11-an=10-2n£¨n¡ÊN£©£®¿ÉÖªÊýÁÐ{bn}ÊǵȲîÊýÁÐSn=
n(b1+bn)
2
=
n(8+10-2n)
2
=-n2+9n
£¨6·Ö£©
µ±n¡Ü5ʱ£¬Sn¡ä=Sn=-n2+9n£®
µ±n£¾5ʱ£¬Sn¡ä=-Sn+2S5=-Sn+40£®=n2-9n+40£®£¨7·Ö£©
µ±n¡Ü5ʱ£¬
Sn
Sn¡ä
=1£¬µ±n£¾5ʱ£¬
S 
Sn¡ä
=
-n2+9n
n2-9n+40
£®
¡à
lim
n¡ú¡Þ
Sn
Sn¡ä
=
lim
n¡ú¡Þ
-n2+9n
n2-9n+40
=-1
£®£¨10·Ö£©
£¨¢ó£©Cn=
1
n(1+an)
=
1
n(2n+2)
=
1
2
(
1
n
-
1
n+1
)
£¨11·Ö£©
Tn=C1+C2+¡­+Cn=
1
2
[(1-
1
2
)+(
1
2
-
1
3
)+¡­+(
1
n
-
1
n+1
)]
=
1
2
(1-
1
n+1
)(12·Ö)

¶ÔÓÚÈÎÒân¡ÊN£®Tn+1-Tn=
1
2
(1-
1
n+2
)-
1
2
(1-
1
n+1
)=
1
2
(
1
n+1
-
1
n+2
)£¾0
£®
¡àTn=
1
2
(1-
1
n+1
)
ÊǹØÓÚnµÄµÝÔöº¯Êý£®£¨13·Ö£©
¡àҪʹҪʹTn£¾
m
32
¶ÔÈÎÒân¡ÊN×ܳÉÁ¢£®Ö»ÒªT1£¾
m
32
£¬¼´
1
4
£¾
m
32
£®
¡àm£¼8£¬ÓÖm¡ÊN£®
Òò´Ë´æÔÚÕûÊým£¬Ê¹µÃ¶ÔÈÎÒân¡ÊN£¬¾ùÓÐTn£¾
m
32
£¬ÇÒmµÄ×î´óֵΪ7£®£¨15·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˵ȲîÊýÁеÄͨÏʽºÍǰnÏîºÍ¹«Ê½£¬¿¼²éºã³ÉÁ¢ÎÊÌ⣬ȷ¶¨ÊýÁеÄͨÏÕýÈ·ÇóºÍÊǹؼü£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2003•¶«³ÇÇø¶þÄ££©É躯Êýf(x)=
4x
4x+2
£¬ÄÇôf(
1
11
)+f(
2
11
)+¡­+f(
10
11
)
µÄֵΪ
5
5
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2003•¶«³ÇÇø¶þÄ££©ÒÑÖªÊýÁÐ{an}µÄͨÏʽÊÇ an=
na
(n+1)b
£¬ÆäÖÐa¡¢b¾ùΪÕý³£Êý£¬ÄÇô anÓë an+1µÄ´óС¹ØÏµÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2003•¶«³ÇÇø¶þÄ££©ÒÑÖª¼¯ºÏA=R£¬B=R+£¬f£ºA¡úBÊÇ´Ó¼¯ºÏAµ½BµÄÒ»¸öÓ³É䣬Èôf£ºx¡ú2x-1£¬ÔòBÖеÄÔªËØ3µÄÔ­ÏóΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2003•¶«³ÇÇø¶þÄ££©Ô²×¶µÄ²àÃæ»ýΪ
2
3
¦Ð
£¬²àÃæÕ¹¿ªÍ¼µÄÔ²ÐĽÇΪ
4
3
¦Ð
£¬Ôò´ËÔ²×¶µÄÌå»ýΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2003•¶«³ÇÇø¶þÄ££©½«ÈýÀâ×¶P-ABC£¨Èçͼ¼×£©ÑØÈýÌõ²àÀâ¼ô¿ªºó£¬Õ¹¿ª³ÉÈçͼÒÒµÄÐÎ×´£¬ÆäÖÐP1£¬B£¬P2¹²Ïߣ¬P2£¬C£¬P3¹²Ïߣ¬ÇÒP1P2=P2P3£¬ÔòÔÚÈýÀâ×¶P-ABCÖУ¬PAÓëBCËù³ÉµÄ½ÇµÄ´óСÊÇ
90¡ã
90¡ã
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸