精英家教网 > 高中数学 > 题目详情
某同学在研究函数f(x)=
2x|x|+1
(x∈R)
时,分别得出如下几个结论:
①等式f(-x)+f(x)=0在x∈R时恒成立;
②函数f(x)的值域为(-2,2);
③若x1≠x2,则一定有f(x1)≠f(x2);
④函数y(x)=f(x)-2x在R上有三个零点.
其中正确的序号有
①②③
①②③
分析:由奇偶性的定义来判断①,由分类讨论结合反比例函数的单调性求解②;由②结合①对称区间上的单调性相同说明③正确;由数形结合来说明④不正确.
解答:解:①f(-x)=
-2x
|-x|+1
=-f(x)∴正确
②当x>0时,f(x)=
2
1+
1
x
∈(0,2)
由①知当x<0时,f(x)∈(-2,0)
x=0时,f(x)=0
∴f(x)∈(-2,2)正确;
③则当x>0时,f(x)=
2
1+
1
x
反比例函数的单调性可知,f(x)在(0,+∞)上是增函数
再由①知f(x)在(-∞,0)上也是增函数,正确
④由③知f(x)的图象与y=2x只有两个交点.不正确.
故答案为:①②③
点评:本题主要考查了函数的定义域,单调性,奇偶性,值域,考查全面,方法灵活,这四个问题在研究时往往是同时考虑,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某同学在研究函数f(x)=
x1+|x|
(x∈R)时,分别给出下面几个结论:
①f(-x)+f(x)=0在x∈R时恒成立;
②函数f(x)的值域为(-1,1);
③若x1≠x2,则一定有f(x1)≠f(x2);
④函数g(x)=f(x)-x在R上有三个零点.
其中正确结论的序号有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学在研究函数 f (x)=
x1+|x|
(x∈R) 时,分别给出下面几个结论:
①等式f(-x)+f(x)=0在x∈R时恒成立;
②函数 f (x) 的值域为 (-1,1);
③若x1≠x2,则一定有f (x1)≠f (x2);
④方程f(x)-x=0有三个实数根.
其中正确结论的序号有
①②③
①②③
.(请将你认为正确的结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学在研究函数f(x)=
x
1+|x|
(x∈R)时,给出了下面几个结论:
①函数f(x)的值域为(-1,1);②若f(x1)=f(x2),则恒有x1=x2;③f(x)在(-∞,0)上是减函数;
④若规定f1(x)=f(x),fn+1(x)=f[fn(x)],则fn(x)=
x
1+n|x|
对任意n∈N*恒成立,
上述结论中所有正确的结论是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•上海模拟)某同学在研究函数f(x)=
x1+|x|
 (x∈R)
时,分别给出下面几个结论:
①等式f(-x)+f(x)=0对x∈R恒成立;
②若f(x1)≠f(x2),则一定有x1≠x2
③若m>0,方程|f(x)|=m有两个不等实数根;
④函数g(x)=f(x)-x在R上有三个零点.
其中正确结论的序号有
①②
①②
.(请将你认为正确的结论的序号都填上)

查看答案和解析>>

同步练习册答案