精英家教网 > 高中数学 > 题目详情

已知定义在R上的奇函数f(x),当x>0时,f(x)=x2+|x|-1,那么x<0时,f(x)的解析式为f(x)=


  1. A.
    x2-|x|+1
  2. B.
    -x2+|x|+1
  3. C.
    -x2-|x|-1
  4. D.
    -x2-|x|+1
D
分析:题目给出了定义在R上的奇函数f(x)在当x>0时的解析式,求x<0时的解析式,可设x<0,则-x>0,所以-x适合x>0时的解析式,在解析式中把x换成-x后,再运用函数是奇函数得到f(x).
解答:设x<0,则-x>0,所以f(-x)=(-x)2+|-x|-1=x2+|x|-1,
因为函数f(x)为定义在R上的奇函数,
所以f(-x)=-f(x),
即-f(x)=x2+|x|-1,解得f(x)=-x2-|x|+1.
故选D.
点评:本题考查了函数解析式的常用求法,给出了函数在某区间上的解析式,求在其它区间上的解析式时,先在待求区间上设出自变量x,然后通过恰当的变化,使变化后的变量符合给定解析式的区间,然后借助于周期性、奇偶性等求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的单调递增奇函数以f(x),若当0≤θ≤
π2
时,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x).当x<0时,f(x)=x2+2x.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)问:是否存在实数a,b(a≠b),使f(x)在x∈[a,b]时,函数值的集合为[
1
b
1
a
]
?若存在,求出a,b;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:大连二十三中学2011学年度高二年级期末测试试卷数学(理) 题型:选择题

已知定义在R上的奇函数,满足,且在区间[0,2]上是增函

数,则(     ).     

A.            B.

C.            D.

 

查看答案和解析>>

科目:高中数学 来源:2012届浙江省高二下学期期末考试理科数学试卷 题型:选择题

已知定义在R上的奇函数,满足,且在区间[0,1]上是增函

数,若方程在区间上有四个不同的根,则

(     )

(A)     (B)      (C)      (D)

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在R上的单调递增奇函数以f(x),若当0≤θ≤数学公式时,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案