精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的前n项和为Sn,a3=0,S4=-4.
(1)求数列{an}的通项公式;
(2)当n为何值时,Sn取得最小值.
(本小题满分14分)
(必修5第2.3节例4的变式题)
(1)∵等差数列{an}中,a3=0,S4=-4,
a1+2d=0
4a1+
4×3
2
d=-4
,(4分)
解得a1=-4,d=2.(6分)
∴an=-4+(n-1)×2=2n-6.(8分)
(2)Sn=na1+
n(n-1)d
2
=-4n+n(n-1)

=n2-5n=(n-
5
2
)2
25
4
.(12分)
∵n∈N*
∴当n=2或n=3时,Sn取得最小值-6.(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案