| A. | -$\frac{1}{x}$ | B. | x | C. | $\frac{x-1}{x+1}$ | D. | $\frac{1+x}{1-x}$ |
分析 根据递推公式f1(x)=f(x),fk+1(x)=f(fk(x)),k=1,2,…,可以递推出前几项,能不完全归纳出周期T=4,所以f2015(x)=f3(x),从而得出答案.
解答 解:由题意知
∵f1(x)=f(x),fk+1(x)=f(fk(x)),k=1,2,…,
∴f1(x)=f(x),
f2(x)=f(f1(x))=-$\frac{1}{x}$;
f3(x)=f(f2(x))=$\frac{x-1}{x+1}$;
f4(x)=f(f3(x))=x;
f5(x)=f(f4(x))=$\frac{1+x}{1-x}$;
…
归纳出规律:fk(x)以周期T=4的周期数列,
∴f2015(x)=f3(x)=$\frac{x-1}{x+1}$;
故选:C.
点评 本题主要考查由递推公式,递推出数列的前几项,归纳出一定的规律,即周期为T=4的周期数列,对学生的不完全归纳法的思想能力要求比较高.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{a}$•$\overrightarrow{b}$=0⇒$\overrightarrow{a}$=$\overrightarrow{0}$或$\overrightarrow{b}$=$\overrightarrow{0}$ | B. | $\overrightarrow{a}$∥$\overrightarrow{b}$⇒$\overrightarrow{a}$在$\overrightarrow{b}$上投影为|$\overrightarrow{a}$| | ||
| C. | $\overrightarrow{a}$⊥$\overrightarrow{b}$⇒$\overrightarrow{a}$•$\overrightarrow{b}$=($\overrightarrow{a}$•$\overrightarrow{b}$)2 | D. | $\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow{b}$•$\overrightarrow{c}$⇒$\overrightarrow{a}$=$\overrightarrow{b}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com