分析 (1)由$f(0)=0,f(-1)=-\frac{1}{2}$,可得$\left\{\begin{array}{l}{b=0}\\{\frac{-a+b}{2}=-\frac{1}{2}}\end{array}\right.$,解出即可得出.
(2)?0<x1<x2<1,只要证明f(x1)-f(x2)<0即可.
解答 (1)解:∵$f(0)=0,f(-1)=-\frac{1}{2}$,∴$\left\{\begin{array}{l}{b=0}\\{\frac{-a+b}{2}=-\frac{1}{2}}\end{array}\right.$,解得b=0,a=1.
∴f(x)=$\frac{x}{{x}^{2}+1}$.
(2)证明:?0<x1<x2<1,
∴f(x1)-f(x2)=$\frac{{x}_{1}}{{x}_{1}^{2}+1}$-$\frac{{x}_{2}}{{x}_{2}^{2}+1}$=$\frac{({x}_{2}-{x}_{1})({x}_{1}{x}_{2}-1)}{({x}_{1}^{2}+1)({x}_{2}^{2}+1)}$,
∵0<x1<x2<1,
∴x2-x1>0,x1x2-1<0,$({x}_{1}^{2}+1)({x}_{2}^{2}+1)$>0,
∴$\frac{({x}_{2}-{x}_{1})({x}_{1}{x}_{2}-1)}{({x}_{1}^{2}+1)({x}_{2}^{2}+1)}$<0,
∴f(x1)-f(x2)<0,
∴f(x1)<f(x2).
∴f(x)在(0,1)上是增函数.
点评 本题考查了函数解析式的求法、函数单调性,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | $\frac{5}{2}$ | C. | -3 | D. | $-\frac{5}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com