精英家教网 > 高中数学 > 题目详情
19.设f(x)是定义域在R上的奇函数,当x≤0时,f(x)=2x+2x+b(b为常数),则f(1)=(  )
A.3B.$\frac{5}{2}$C.-3D.$-\frac{5}{2}$

分析 由f(x)是定义域在R上的奇函数,以及x≤0时的解析式,从而有f(0)=0,这便可得出b=-1,从而根据f(1)=-f(-1)即可求出f(1).

解答 解:f(x)为定义在R上的奇函数;
∴f(0)=1+0+b=0;
∴b=-1;
∴$f(1)=-f(-1)=-({2}^{-1}-2-1)=\frac{5}{2}$.
故选B.

点评 考查奇函数的定义,奇函数在原点有定义时,f(0)=0,以及已知函数求值的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.求函数y=9x-2•3x+3的单调区间,并求出其值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=($\frac{1}{2}$)|x-1|+a|x+2|.当a=1时,f(x)的单调递减区间为[1,+∞);当a=-1时,f(x)的单调递增区间为[-2,1],f(x)的值域为[$\frac{1}{8}$,8].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求值:
(1)2log510+log50.25          
(2)(5$\frac{1}{16}$)0.5+(-1)-1÷0.75-2+(2$\frac{10}{27}$)${\;}^{-\frac{2}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列4个命题:
①命题“若x2-x=0,则x=1”的逆否命题为“若x≠1,则x2-x≠0”;
②若“?p或q”是假命题,则“p且?q”是真命题;
③若p:x(x-2)≤0,q:log2x≤1,则p是q的充要条件;
④若命题p:存在x∈R,使得2x<x2,则?p:任意x∈R,均有2x≥x2
其中正确命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.将二进制数110101(2)化成十进制数,结果为53,再将该结果化成七进制数,结果为104(7)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列指数式与对数式互化不正确的一组是(  )
A.e0=1与ln1=0;B.8${\;}^{\frac{1}{3}}$=2与log82=$\frac{1}{3}$
C.log39=2与9${\;}^{\frac{1}{2}}$=3D.log33=1与31=3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$f(x)=\frac{ax+b}{{{x^2}+1}}$,且$f(0)=0,f(-1)=-\frac{1}{2}$
(1)求f(x)的解析式
(2)证明:f(x)在(0,1)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一种商品连续两次降价10%后,欲通过两次连续提价(每次提价幅度相同)恢复原价,则每次应提价11%.

查看答案和解析>>

同步练习册答案