精英家教网 > 高中数学 > 题目详情

在等差数列{an}中,a3+a8+a10=9,那么S13=________.

39
分析:设等差数列{an}的首项为a1,公差为d,,利用等差数列的通项公式化简已知的等式a2+a8+a11=30得到a1+6d=a7的值,然后利用等差数列的性质表示出S13=(a1+a13)+(a2+a12)+…+(a6+a8)+a7=13a7,把a7的值代入即可求出值.
解答:设等差数列{an}的首项为a1,公差为d,由a2+a8+a10=9,可得a1+6d=a7=3,
故S13=(a1+a13)+(a2+a12)+…+(a6+a8)+a7=13a7=13×3=39
故答案为:39.
点评:此题要求学生掌握等差数列的性质,灵活运用等差数列性质是解题的关键,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=-2010,其前n项的和为Sn.若
S2010
2010
-
S2008
2008
=2,则S2010=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+3a8+a15=60,则2a9-a10的值为
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的两个根,那么使得前n项和Sn为负值的最大的n的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,若S4=1,S8=4,则a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步练习册答案