A.{1,4} B.{1,7}?
C.{4,7} D.{1,4,7}?
科目:高中数学 来源: 题型:
已知函数g(x)=ax3+bx2+cx(a∈R且a≠0),g(-1)=0,且g(x)的导函数f(x)满足f(0)f(1)≤0.设x1、x2为方程f(x)=0的两根.
(1)求
的取值范围;
(2)若当|x1-x2|最小时,g(x)的极大值比极小值大
,求g(x)的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的l高调函数.
(1)如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,求实数m的取值范围.
(2)如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:新课标高三数学函数的图象奇偶性、周期性专项训练(河北) 题型:解答题
设f(x)是定义在R上的奇函数,且对任意实数x恒满足f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x-x2.
(1)求证:f(x)是周期函数.
(2)当x∈[2,4]时,求f(x)的解析式.
(3)计算f(0)+f(1)+f(2)+…+f(2011)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com