精英家教网 > 高中数学 > 题目详情
已知F(θ)=cos2θ+cos2(θ+α)+cos2(θ+β).问是否存在满足0≤α<β≤π的α、β,使得F(θ)的值不随θ的变化而变化?如果存在,求出α、β的值;如果不存在,请说明理由.

解:F(θ)=+[cos2θ+cos(2θ+2α)+cos(2θ+2β)]

=+(1+cos2α+cos2β)cos2θ-(sin2α+sin2β)sin2θ,

F(θ)的值不随θ变化的充要条件是

    得(cos2α+1)2+sin22α=1,cos2α=-.

    同理,cos2β=-.

    又0≤α<β≤π,故存在α、β满足条件,其值分别为α=,β=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=2sin(x-
π
4
)•cos(x-
π
4
)+sin2x
,则函数f(x)得最小正周期是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(θ)=
cos(θ-
2
)•sin(
2
+θ)
sin(-θ-π)

(Ⅰ)若f(θ)=
1
3
,求tanθ的值;
(Ⅱ)若f(
π
6
-θ)=
1
3
,求f(
6
+θ)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=(
cosα
sinβ
)x+(
cosβ
sinα
)x (x>0)
α,  β∈(0,  
π
2
)
,若f(x)<2,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
)
,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(θ)=
cos(θ-
2
)•sin(
2
+θ)
sin(-θ-π)

(Ⅰ)若f(θ)=
1
3
,求tanθ的值;
(Ⅱ)若f(
π
6
-θ)=
1
3
,求f(
6
+θ)
的值.

查看答案和解析>>

同步练习册答案