精英家教网 > 高中数学 > 题目详情
已知P(x,y)为圆C:x2+y2-4x-14y+45=0上的动点,
(1)求x2+y2+4x-6y+13的最大值和最小值;
(2)求k=
y-3
x+2
的取值范围.
考点:圆方程的综合应用
专题:综合题,直线与圆
分析:(1)设Q(-2,3),则x2+y2-4x+6y+13=(x+2)2+(y-3)2=|PQ|2,可得|PQ|的最值,即可求x2+y2+4x-6y+13的最大值和最小值;
(2)依题意,k为(-2,3)与圆C上任意一点连线的斜率,它的最大值和最小值分别是过(-2,3)的圆C的切线的斜率,从而可得结论.
解答: 解:(1)设Q(-2,3),则x2+y2-4x+6y+13=(x+2)2+(y-3)2
即x2+y2+4x-6y+13表示圆C上的点与Q的距离的平方|PQ|2
因为|PQ|max=|CQ|+R=6
2
,|PQ|min=|CQ|-R=2
2

所以原式的最大值为72,原式的最小值为8
(2)依题意,k为(-2,3)与圆C上任意一点连线的斜率,它的最大值和最小值分别是过(-2,3)的圆C的切线的斜率,
所以kmax=tan(45°+30°)=2+
3
,kmin=tan(45°-30°)=2-
3
(注意kQC=1),
所以k∈[2-
3
,2+
3
].
点评:本题考查取值范围的确定,考查三角函数知识,考查圆的性质,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1+x+x2)(x-
1
x
6的展开式中的常数项为(  )
A、-5B、5C、2D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个圆的圆心为坐标原点,半径为2.从这个圆上任意一点P向x轴作垂线段PP′,求线段PP′中点M的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据下列条件,分别求出对应的二次函数关系式.已知抛物线的顶点是(-1,-2),且过点(1,10).

查看答案和解析>>

科目:高中数学 来源: 题型:

求直线y=x+
3
2
被曲线y=
1
2
x2截得的线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)cos73°cos13°+cos17°sin13°
(2)函数 f(x)=logax(a>0,且a≠1)在区间[2,8]上的最大值为6,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)在区间[-1,
1
2
]上,函数y=f(x)的图象恒在直线y=2x+m的上方,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知θ是三角形的内角,sinθ+cosθ=
1
5
,求下列各式的值.
(1)sinθ-cosθ;   
(2)tanθ

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线f(x)=x2(x>0)在点(a,f(a))处的切线与两条坐标轴围成的三角形的面积为54,则a=
 

查看答案和解析>>

同步练习册答案