分析 利用余弦定理计算cosA,得出sinA,代入面积公式得出S△ABC关于c的函数,利用基本不等式得出面积的最大值.
解答 解:由余弦定理得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{3{c}^{2}-4}{2\sqrt{2}{c}^{2}}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{-{c}^{4}+24{c}^{2}-16}}{2\sqrt{2}{c}^{2}}$.
∴S△ABC=$\frac{1}{2}bcsinA$=$\frac{\sqrt{-{c}^{4}+24{c}^{2}-16}}{4}$.
∵-c4+24c2-16=-(c2-12)2+128≤128,
∴S△ABC≤$\frac{\sqrt{128}}{4}$=2$\sqrt{2}$.
故答案为:2$\sqrt{2}$.
点评 本题考查了余弦定理、同角三角函数基本关系式、二次函数的性质、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 970 | B. | 1030 | C. | 997 | D. | 206 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,$\frac{π}{2}$] | B. | [$\frac{π}{2}$,π] | C. | [$\frac{π}{4}$,$\frac{π}{2}$] | D. | [$\frac{3π}{4}$,π] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 64 | B. | 32 | C. | 2$\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com