精英家教网 > 高中数学 > 题目详情
9.在△ABC中,三个内角A,B,C的对边分别为a,b,c,已知a=2,b=$\sqrt{2}$c,△ABC面积的最大值是2$\sqrt{2}$.

分析 利用余弦定理计算cosA,得出sinA,代入面积公式得出S△ABC关于c的函数,利用基本不等式得出面积的最大值.

解答 解:由余弦定理得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{3{c}^{2}-4}{2\sqrt{2}{c}^{2}}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{-{c}^{4}+24{c}^{2}-16}}{2\sqrt{2}{c}^{2}}$.
∴S△ABC=$\frac{1}{2}bcsinA$=$\frac{\sqrt{-{c}^{4}+24{c}^{2}-16}}{4}$.
∵-c4+24c2-16=-(c2-12)2+128≤128,
∴S△ABC≤$\frac{\sqrt{128}}{4}$=2$\sqrt{2}$.
故答案为:2$\sqrt{2}$.

点评 本题考查了余弦定理、同角三角函数基本关系式、二次函数的性质、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.设M是△ABC内一点,且$\overrightarrow{AB}$•$\overrightarrow{AC}$=4$\sqrt{3}$,∠BAC=30°,定义f(M)=(m,n,p),其中m,n,p分别是△MBC,△MCA,△MAB的面积,若f(M)=(1,n,p),则$\frac{1}{n}$+$\frac{4}{p}$的最小值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在平面直角坐标系xOy,已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的半焦距为c,且过点($\sqrt{3}$,$\frac{1}{2}$),原点O到经过两点(c,0),(0,b)的直线的距离为$\frac{1}{2}$c.
(Ⅰ)求椭圆E的方程;
(Ⅱ)A为椭圆E上异于顶点的一点,点P满足$\overrightarrow{OP}$=λ$\overrightarrow{AO}$,过点P的直线交椭圆E于B、C两点,且$\overrightarrow{BP}$=$μ\overrightarrow{BC}$,若直线OA,OB的斜率之积为-$\frac{1}{4}$,求证:λ2=2μ-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.市疾病控制中心今日对我校高二学生进行了某项健康调查,调查的方法是采取分层抽样的方法抽取样本.我校高二学生共有2000人,抽取了一人200人的样本,样本中男生103人,请问我校共有女生(  )
A.970B.1030C.997D.206

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数f(x)=3sin(2x+θ)(0<θ<π)是偶函数,则f(x)在[0,π]上的递增区间是(  )
A.[0,$\frac{π}{2}$]B.[$\frac{π}{2}$,π]C.[$\frac{π}{4}$,$\frac{π}{2}$]D.[$\frac{3π}{4}$,π]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设实数x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{x≥y}\\{2x-y≤1}\end{array}\right.$,则23x+2y的最大值是(  )
A.64B.32C.2$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.将一枚硬币连掷三次,出现“三个正面”的概率为$\frac{1}{8}$;出现“一个正面,两个反面”的概率为$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知一个正四棱柱的高为8cm,底面边长为6cm,以它的两个底面的中心连线为轴,钻一个半径为1cm的圆柱体的孔.(1)求这个正四棱柱去掉圆柱体的孔后剩余部分的表面积.(精确到0.01cm2
(2)求这个正四棱柱去掉圆柱体的孔后剩余部分的体积.(精确到0.01cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知动点P到点A(2,-1)、B(1,0)的距离之比为$\sqrt{2}$:1.
(1)求点P的轨迹方程C;
(2)过点Q(1,2)作直线l与曲线C相交与M、N两点,且|MN|=2$\sqrt{2}$,求直线l的方程.

查看答案和解析>>

同步练习册答案