精英家教网 > 高中数学 > 题目详情
如图,P△ABC所在平面外一点,PA=PB,CB⊥平面PAB,M是PC中点,N是AB上的点,AN=3NB,
(1)求证:MN⊥AB;
(2)当∠PAB=90°,BC=2,AB=4时,求MN的长.
(1)证明:取AB中点Q,连接PQ,CQ,
因为CB⊥平面PAB,则PQ⊥BC,又PA=PB,所以PQ⊥AB,
于是PQ⊥平面ABC,所以∠PQC=90°,
因为M是PC中点,所以MQ=
1
2
PC,
又因为∠CBP=90°,所以MB=
1
2
PC,所以MB=MQ;
而N是BQ的中点,所以MN⊥AB;
(2)当∠PAB=90°,BC=2,AB=4时,
有PB=2
2
,PC=2
3
,MB=
1
2
PC=
3

所以MN=
MB2-BN2
=
2

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

线段AB的两个端点A,B到平面α的距离分别为6cm,9cm,P在线段AB上,AP:PB=1;2,则P到平面α的距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个四棱锥S-ABCD的底面是边长为a的正方形,侧面展开图如图所示.SC为四棱锥中最长的侧棱,点E为AB的中点
(1)画出四棱锥S-ABCD的示意图,求二面角E-SC-D的大小;
(2)求点D到平面SEC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平行六面体ABCD-A1B1C1D1中,AB=1,AD=2,AA1=3,∠BAD=90°,∠BAA1=∠DAA1=60°,则AC1的长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

长方体ABCD-A1B1C1D1中,AB=3,AD=2,AA1=1,则从A点沿表面到C1点的最短距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在直角坐标系xOy中,设A(2,2),B(-2,-3),沿y轴把坐标平面折成120°的二面角后,AB的长是(  )
A.
35
B.6C.3
5
D.
53

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,在正方体ABCD-A1B1C1D1中E、F分别在A1D、AC上,且A1E=
2
3
A1D,AF=
1
3
AC,则(  )
A.EF至多与A1D、AC之一垂直
B.EF是A1D、AC的公垂线
C.EF与BD1相交
D.EF与BD1异面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图是某直三棱柱ABC-DPQ被削去上底后的直观图与三视图的侧视图、俯视图.在直观图中,M是BD的中点.侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(1)求证:EM平面ABC;
(2)求出该几何体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=
2
,AA′=1,点M,N分别为A′B和B′C′的中点.
(Ⅰ)证明:MN平面A′ACC′;
(Ⅱ)求三棱锥A′-MNC的体积.
(椎体体积公式V=
1
3
Sh,其中S为地面面积,h为高)

查看答案和解析>>

同步练习册答案