【题目】定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M≥0,都有|f(x)|≤M 成立,则称f(x)是D上的有界函数,其中M称为函f(x)的一个上界.已知函数f(x)=1+a+ , g(x)= .
(1)若函数g(x)为奇函数,求实数a的值;
(2)在(1)的条件下,求函数g(x),在区间[ , 3]上的所有上界构成的集合;
(3)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围.
【答案】解:(1)∵函数g(x)为奇函数,
∴g(﹣x)=﹣g(x),即=﹣.,
即=,得a=±1,而当a=1时不合题意,故a=﹣1.
(2)由(1)得:g(x)=,
∵函数g(x)=在区间(1,+∞)上单调递增,
∴函数g(x)=在区间[,3]上单调递增,
∴函数g(x)=在区间[,3]上的值域为[﹣2,﹣1],
∴|g(x)|≤2,
故函数g(x)在区间[,3]上的所有上界构成集合为[2,+∞).
(3)由题意知,|f(x)|≤3在[0,+∞)上恒成立.
∴﹣3≤f(x)≤3,
∴﹣4﹣≤a≤2﹣,
∴﹣42x﹣≤a≤22x﹣在[0,+∞)上恒成立.
设t=2x , t≥1,h(t)=﹣4t﹣,p(t)=2t﹣,
则h′(t)=﹣4+<0,p′(t)=2+>0,
∴h(t)在[1,+∞)上递减,p(t)在[1,+∞)上递增,
∴h(t)在[1,+∞)上的最大值为h(1)=﹣5,p(t)在[1,+∞)上的最小值为p(1)=1.
∴实数a的取值范围为[﹣5,1]
【解析】(1)利用奇函数的定义,建立方程,即可求实数a的值;
(2)求出函数g(x)=在区间[ , 3]上的值域为[﹣2,﹣1],结合新定义,即可求得结论;
(3)由题意知,|f(x)|≤3在[0,+∞)上恒成立,可得﹣42x﹣≤a≤22x﹣在[0,+∞)上恒成立,换元,求出左边的最大值,右边的最小值,即可求实数a的取值范围.
【考点精析】掌握函数的最值及其几何意义和函数奇偶性的性质是解答本题的根本,需要知道利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值;在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.
科目:高中数学 来源: 题型:
【题目】先后2次抛掷一枚骰子,将得到的点数分别记为.
(Ⅰ)求满足的概率;
(Ⅱ)设三条线段的长分别为和5,求这三条线段能围成等腰三角形(含等边三角形)的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知, 分别为椭圆: 的左、右焦点,点在椭圆上.
(Ⅰ)求的最小值;
(Ⅱ)设直线的斜率为,直线与椭圆交于, 两点,若点在第一象限,且,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列五个命题中:
①函数y=loga(2x﹣1)+2015(a>0且a≠1)的图象过定点(1,2015);
②若定义域为R函数f(x)满足:对任意互不相等的x1、x2都有(x1﹣x2)[f(x1)﹣f(x2)]>0,则f(x)是减函数;
③f(x+1)=x2﹣1,则f(x)=x2﹣2x;
④若函数f(x)=是奇函数,则实数a=﹣1;
⑤若a=(c>0,c≠1),则实数a=3.
其中正确的命题是 .(填上相应的序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学著作《九章算术》有如下问题:“今有蒲(水生植物名)生一日,长三尺;莞(植物名,俗称水葱、席子草)生一日,长一尺.蒲生日自半,莞生日自倍.问几何日而长等?”意思是:今有蒲生长1日,长为3尺;莞生长1日,长为1尺.蒲的生长逐日减半,莞的生长逐日增加1倍.若蒲、莞长度相等,则所需的时间约为(结果保留一位小数.参考数据:,)
A.1.3日 B.1.5日
C.2.6日 D.2.8日
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系.若直线的极坐标方程为,曲线的极坐标方程为,将曲线上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线.
(Ⅰ)求曲线的直角坐标方程;
(Ⅱ)已知直线与曲线交于两点,点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列各式:
(1)已知loga <1,则a> ;
(2)函数y=2x的图象与函数y=2﹣x的图象关于y轴对称;
(3)函数f(x)=lg(mx2+mx+1)的定义域是R,则m的取值范围是0≤m<4;
(4)函数y=ln(﹣x2+x)的递增区间为(﹣∞, ]
正确的有 . (把你认为正确的序号全部写上)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com