【题目】如图,有一块半圆形空地,开发商计划建一个矩形游泳池ABCD及其矩形附属设施EFGH,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为O,半径为R,矩形的一边AB在直径上,点C,D,G,H在圆周上,E,F在边CD上,且 ,设∠BOC=θ.
(1)记游泳池及其附属设施的占地面积为f(θ),求f(θ)的表达式;
(2)怎样设计才能符合园林局的要求?
【答案】
(1)解:由题意,AB=2Rcosθ,BC=Rsinθ,且△HOG 为等边三角形,
所以,HG=R,GF= R﹣Rsinθ,
f(θ)=SABCD+SEFGH=2RcosθRsinθ+R( R﹣Rsinθ),θ∈(0, )
(2)解:要符合园林局的要求,只要f(θ)最小,
由(1)知,f′(θ)=R2(2cos2θ﹣2sin2θ﹣cosθ)=R2(4cos2θ﹣cosθ﹣2),
令f′(θ)=0,即4cos2θ﹣cosθ﹣2=0,
解得cosθ= 或 (舍去),
令cosθ0= ,θ0∈(0, ),
当θ∈(0,θ0)时,f′(θ)<0,f(θ)是单调减函数,
当θ∈(θ0, )时,f′(θ)>0,f(θ)是单调增函数,
所以当θ=θ0时,f(θ)取得最小值.
答:当θ满足cosθ= 时,符合园林局要求
【解析】(1)根据题意可得各个边与θ的关系,故f(θ)可分为两个矩形的面积之和,代入数值求得。(2)利用求导求出结果,验证当θ=θ0时,f(θ)取得最小值。
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知椭圆 + =1(a>b>0)的离心率为 ,C为椭圆上位于第一象限内的一点.
(1)若点C的坐标为(2, ),求a,b的值;
(2)设A为椭圆的左顶点,B为椭圆上一点,且 = ,求直线AB的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥A﹣BOC中,OA,OB,OC两两垂直,点D,E分别为棱BC,AC的中点,F在棱AO上,且满足OF= ,已知OA=OC=4,OB=2.
(1)求异面直线AD与OC所成角的余弦值;
(2)求二面角C﹣EF﹣D的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四边形ABCD中, =(2,﹣2), =(x,y), =(1, ).
(1)若 ∥ ,求x,y之间的关系式;
(2)满足(1)的同时又有 ⊥ ,求x,y的值以及四边形ABCD的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:对任意的 ,sinx≤ax+b≤tanx恒成立,其中a,b∈R.
(1)若a=1,b=0,求证:命题p为真命题.
(2)若命题p为真命题,求a,b的所有值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P(A|B),P(B|A)分别是( )
A. ,
B. ,
C. ,
D. ,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com