精英家教网 > 高中数学 > 题目详情

【题目】已知向量 ,设
(Ⅰ)若f(α)=2,求 的值;
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a﹣b)cosC=ccosB,求f(A)的取值范围.

【答案】解:(Ⅰ)向量

那么: = =

∵f(α)=2,即 =

(Ⅱ)∵(2a﹣b)cosC=ccosB,

∴(2sinA﹣sinB)cosC=sinCcosB,

2sinAcosC=sinBcosC+cosBsinC=sin(B+C),

∴2sinAcosC=sinA,

∵sinA≠0,

,∴

∴f(A)的取值范围为(2,3).


【解析】(Ⅰ)根据题意由两个向量的数量积运算公式可得出 f ( x )的解析式,结合已知利用余弦函数二倍角的关系式式即可求出结果。(Ⅱ)利用正弦定理结合两角和差的正弦公式即可得出2sinAcosC=sinA,进而可得出 cosC的值 故可求出角A的大小,再由已知角的取值范围得出的取值范围进而求出 f ( A ) 的取值范围即可。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,AC=6,
(1)求AB的长;
(2)求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数z=bi(b∈R), 是实数,i是虚数单位.
(1)求复数z;
(2)若复数(m+z)2所表示的点在第一象限,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Ω:x2=2py(p>0),过点(0,2p)的直线与抛物线Ω交于A、B两点,AB的中点为M,若点M到直线y=2x的最小距离为 ,则p=(  )
A.
B.1
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0),F(﹣c,0)为其左焦点,点P(﹣ ,0),A1 , A2分别为椭圆的左、右顶点,且|A1A2|=4,|PA1|= |A1F|.
(1)求椭圆C的方程;
(2)过点A1作两条射线分别与椭圆交于M、N两点(均异于点A1),且A1M⊥A1N,证明:直线MN恒过x轴上的一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(1+x)﹣ax,
(Ⅰ)当b=1时,求g(x)的最大值;
(Ⅱ)若对x∈[0,+∞),f(x)≤0恒成立,求a的取值范围;
(Ⅲ)证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的前n项和为Sn , 且 (a∈N+).
(1)求a的值及数列{an}的通项公式;
(2)设 ,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公差不为0的等差数列{an}的前n项和为Sn , 若a2 , a5 , a14成等比数列, ,则a10=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学为研究函数 的性质,构造了如图所示的两个边长为1的正方形ABCD和BEFC,点P是边BC上的一个动点,设CP=x,则AP+PF=f(x).请你参考这些信息,推知函数f(x)的值域是

查看答案和解析>>

同步练习册答案