精英家教网 > 高中数学 > 题目详情
如图,在四棱锥PABCD中,底面是边长为2的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=2,M、N分别为PB、PD的中点.

(1)证明:MN∥平面ABCD;
(2)过点A作AQ⊥PC,垂足为点Q,求二面角AMNQ的平面角的余弦值.
(1)见解析  (2)

(1)证明:连接BD,因为M、N分别是PB、PD的中点,所以MN是△PBD的中位线,所以MN∥BD.
又因为MN?平面ABCD,BD?平面ABCD,
所以MN∥平面ABCD.
(2)解: 如图所示,在菱形ABCD中,∠BAD=120°,

得AC=AB=BC=CD=DA,
BD=AB.
又因为PA⊥平面ABCD,
所以PA⊥AB,PA⊥AC,
PA⊥AD.
所以PB=PC=PD.
所以△PBC≌△PDC.
而M、N分别是PB、PD的中点,
所以MQ=NQ,
且AM=PB=PD=AN.
取线段MN的中点E,连接AE,EQ,
则AE⊥MN,QE⊥MN,
所以∠AEQ为二面角AMNQ的平面角.
由AB=2,PA=2,故在△AMN中,AM=AN=3,MN=BD=3,得AE=.
在直角△PAC中,AQ⊥PC,得AQ=2,QC=2,PQ=4,
在△PBC中,cos∠BPC==,
得MQ==.
在等腰△MQN中,MQ=NQ=,MN=3,
得QE==.
在△AEQ中,AE=,QE=,AQ=2,
得cos∠AEQ==.
所以二面角AMNQ的平面角的余弦值为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,AB为圆O的直径,点E、F在圆O上,ABEF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求证:AF⊥平面CBF;
(2)设FC的中点为M,求证:OM平面DAF;
(3)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为VF-ABCD,VF-CBE,求VF-ABCD:VF-CBE

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直三棱柱的所有顶点都在半径为的球面上,,则二面角的余弦值为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正四棱锥VABCD中,底面正方形ABCD的边长为1,侧棱长为2,则异面直线VA与BD所成角的大小为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在长方体ABCD-A1B1C1D1中,ABBC=2,A1DBC1所成的角为,则BC1与平面BB1D1D所成角的正弦值为(  ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在直角坐标系中,设,沿轴把坐标平面折成的二面角后,的长是  (    )
A.B.6C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图4,空间四边形ABCD中,若AD=4,BC=4,E、F分别为AB、CD中点,且EF=4,则AD与BC所成的角是              .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[2014·汕头质检]一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:

①AB⊥EF;
②AB与CM所成的角为60°;
③EF与MN是异面直线;
④MN∥CD.
以上四个命题中,正确命题的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,二面角的大小是60°,线段上, 所成的角为30°,则        

查看答案和解析>>

同步练习册答案