精英家教网 > 高中数学 > 题目详情
(2013•南京二模)设函数f(x)=x2-(a-2)x-alnx.
(1)求函数f(x)的单调区间;
(2)若函数有两个零点,求满足条件的最小正整数a的值;
(3)若方程f(x)=c有两个不相等的实数根x1,x2,求证:f′(
x1+x22
)>0
分析:(1)对a分类讨论,利用导数与函数单调性的关系即可得出;
(2)由(1)可得,若函数f(x)有两个零点,则a>0,且f(x)的最小值f(
a
2
)<0
,即-a2+4a-4aln
a
2
<0
.可化为h(a)=a+4ln
a
2
-4>0
.利用单调性判断其零点所处的最小区间即可得出;
(3))由x1,x2是方程f(x)=c得两个不等实数根,由(1)可知:a>0.不妨设0<x1<x2.则
x
2
1
-(a-2)x1-alnx1=c
x
2
2
-(a-2)x2-alnx2=c

两式相减得
x
2
1
-(a-2)x1-alnx1-
x
2
2
+(a-2)x2
+alnx2=0,化为a=
x
2
1
+2x1-
x
2
2
-2x2
x1+lnx1-x2-lnx2
.由f(
a
2
)=0
,当x∈(0,
a
2
)
时,f′(x)<0,当x∈(
a
2
,+∞)
时,f′(x)>0.故只要证明
x1+x2
2
a
2
即可,即证明ln
x1
x2
2x1-2x2
x1+x2
,令t=
x1
x2
换元,再利用导数即可证明.
解答:解:(1)x∈(0,+∞).
f(x)=2x-(a-2)-
a
x
=
2x2-(a-2)x-a
x
=
(2x-a)(x+1)
x

当a≤0时,f′(x)>0,函数f(x)在(0,+∞0上单调递增,即f(x)的单调递增区间为(0,+∞).
当a>0时,由f′(x)>0得x>
a
2
;由f′(x)<0,解得0<x<
a
2

所以函数f(x)的单调递增区间为(
a
2
,+∞)
,单调递减区间为(0,
a
2
)

(2)由(1)可得,若函数f(x)有两个零点,则a>0,且f(x)的最小值f(
a
2
)<0
,即-a2+4a-4aln
a
2
<0

∵a>0,∴a+4ln
a
2
-4>0

令h(a)=a+4lin
a
2
-4,可知h(a)在(0,+∞)上为增函数,且h(2)=-2,h(3)=4ln
3
2
-1
=ln
81
16
-1>lne-1=0

所以存在零点h(a0)=0,a0∈(2,3),
当a>a0时,h(a)>0;当0<a<a0时,h(a)<0.
所以满足条件的最小正整数a=3.
又当a=3时,f(3)=3(2-ln3)>0,f(1)=0,∴a=3时,f(x)由两个零点.
综上所述,满足条件的最小正整数a的值为3.
(3)∵x1,x2是方程f(x)=c得两个不等实数根,由(1)可知:a>0.
不妨设0<x1<x2.则
x
2
1
-(a-2)x1-alnx1=c
x
2
2
-(a-2)x2-alnx2=c

两式相减得
x
2
1
-(a-2)x1-alnx1-
x
2
2
+(a-2)x2
+alnx2=0,
化为a=
x
2
1
+2x1-
x
2
2
-2x2
x1+lnx1-x2-lnx2

f(
a
2
)=0
,当x∈(0,
a
2
)
时,f′(x)<0,当x∈(
a
2
,+∞)
时,f′(x)>0.
故只要证明
x1+x2
2
a
2
即可,
即证明x1+x2
x
2
1
+2x1-
x
2
2
-2x2
x1+lnx1-x2-lnx2
,即证明ln
x1
x2
2x1-2x2
x1+x2

t=
x1
x2
(0<t<1)
,令g(t)=lnt-
2t-2
t+1
,则g(t)=
1
t
-
4
(t+1)2
=
(t-1)2
t(t+1)2

∵1>t>0,∴g′(t)>0
.∴g(t)在(0,1)上是增函数,又在t=1处连续且g(1)=0,
∴当t∈(0,1)时,g(t)<0纵成立.故命题得证.
点评:本题综合考查了利用导数研究函数的单调性、极值与最值等基础知识,及其分类讨论思想方法、等价转化方法、换元法等基本技能与方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•南京二模)函数f(x)=sinxcosx的最小正周期是
π
π

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南京二模)已知集合A={2a,3},B={2,3}.若A∪B={1,2,3},则实数a的值为
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南京二模)若复数z=
1-mi2+i
(i是虚数单位)是纯虚数,则实数m的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南京二模)盒子中有大小相同的3只白球、2只黑球,若从中随机地摸出两只球,则两只球颜色相同的概率是
2
5
2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南京二模)如图是一个算法流程图,其输出的n的值是
5
5

查看答案和解析>>

同步练习册答案