【题目】同时满足两个条件:(1)定义域内是减函数;(2)定义域内是奇函数的函数是( )
A.f(x)=﹣x|x|
B.![]()
C.f(x)=tanx
D.![]()
科目:高中数学 来源: 题型:
【题目】给出下列命题中
① 非零向量
满足
,则
的夹角为
;
② ![]()
>0是
的夹角为锐角的充要条件;
③若
则
必定是直角三角形;
④△ABC的外接圆的圆心为O,半径为1,若
,且
,则向量
在向量
方向上的投影为
.
以上命题正确的是 __________ (注:把你认为正确的命题的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲乙丙三辆汽车在不同速度下的燃油效率情况,下列叙述中正确的是( )
![]()
A. 消耗1升汽油,乙车最多可行驶5千米
B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
C. 甲车以80千米/小时的速度1小时,消耗10升汽油
D. 某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比乙车更省油.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】综合题。
(1)若cos
=
,
π<x<
π,求
的值.
(2)已知函数f(x)=2
sinxcosx+2cos2x﹣1(x∈R),若f(x0)=
,x0∈[
,
],求cos2x0的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.任取t∈R,若函数f(x)在区间[t,t+1]上的最大值为M(t),最小值为m(t),记g(t)=M(t)﹣m(t).
(1)求函数f(x)的最小正周期及对称轴方程;
(2)当t∈[﹣2,0]时,求函数g(t)的解析式;
(3)设函数h(x)=2|x﹣k|,H(x)=x|x﹣k|+2k﹣8,其中实数k为参数,且满足关于t的不等式
有解,若对任意x1∈[4,+∞),存在x2∈(﹣∞,4],使得h(x2)=H(x1)成立,求实数k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com