精英家教网 > 高中数学 > 题目详情
设函数f(x)=(x+1)n(n∈N),且当x=
2
时,f(x)的值为17+12
2
;g(x)=(x+a)m(a≠1,a∈R),定义:F(x)=
C2m+14n-7
f(x)-
C2n+94m+1
g(x).
(1)当a=-1时,F(x)的表达式.
(2)当x∈[0,1]时,F(x)的最大值为-65,求a的值.
∵f(x)=(x+1)n,f(
2
)=17+12
2
,∴n=4  …(2分)
又∵
4n-7≥2m+1
4m+1≥2n+9
,∴m=4,
∴F(x)=(x+1)4-(x+a)4…(4分)
(1)当a=-1时,F(x)=(x+1)4-(x+a)4=8x3+8x   …(6分)
(2)∵F(x)=(x+1)4-(x+a)4=4(1-a)x3+6(1-a2)x2+4(1-a3)x+1-a4
∵F′(x)=12(1-a)x2+12(1-a2)x+4(1-a3)    …(8分)
△=[12(1-a2)]2-4•12(1-a)•4(1-a3)=-48(1-a)4<0       (a≠1)
①当1-a>0时,F′(x)>0,F(x)为增函数.
∵x∈[0,1]
∴F(1)=-65∴2 4-(1+a)4=-65
∴1+a=±3
∴a=-4或a=2(舍去)
②当1-a<0时,F′(x)<0,F(x)为减函数.
∴F(0)=-65,∴14-a4=-65
∴a=
466
a=-
466
(舍去)
综上:a=
466
或a=-4   …(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省苏、锡、常、镇四市高三调研数学试卷(一)(解析版) 题型:解答题

设函数f(x)=x(x-1)2,x>0.
(1)求f(x)的极值;
(2)设0<a≤1,记f(x)在(0,a]上的最大值为F(a),求函数的最小值;
(3)设函数g(x)=lnx-2x2+4x+t(t为常数),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的实数m有且只有一个,求实数m和t的值.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省苏州市高考数学一模试卷(解析版) 题型:解答题

设函数f(x)=x(x-1)2,x>0.
(1)求f(x)的极值;
(2)设0<a≤1,记f(x)在(0,a]上的最大值为F(a),求函数的最小值;
(3)设函数g(x)=lnx-2x2+4x+t(t为常数),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的实数m有且只有一个,求实数m和t的值.

查看答案和解析>>

同步练习册答案