精英家教网 > 高中数学 > 题目详情
设函数f(x)=2x3-3(a+1)x2+6ax+8(a∈R)在x=3处取得极值
(1)求常数a的值;
(2)求f(x)在R上的单调区间;
(3)求f(x)在[-4,4]上的最值.
分析:(1)f'(x)=6x2-6(a+1)x+6a因f(x)在x=3取得极值,由此能求出a.
(2)由(1)知f'(x)=6x2-24x+18=6(x-3)(x-1)=0得x1=3,x2=1.由此能求出f(x)在R上的单调区间.
(3)由(2)知f(x)在(-4,1)和(3,4)上单调增,(1,3)上单调减,由此能求出f(x)在[-4,4]上的最值.
解答:解:(1)∵函数f(x)=2x3-3(a+1)x2+6ax+8(a∈R),
∴f'(x)=6x2-6(a+1)x+6a,
因f(x)在x=3取得极值,
所以f'(3)=0.解得a=3.(3分)
经检验知当a=3时,x=3为f(x)为极值点.
故a=3.(2分)
(2)由(1)知f'(x)=6x2-24x+18=6(x-3)(x-1)=0,
得x1=3,x2=1.
故f(x)在(-∞,1)和(3,+∞)上单调增,
(1,3)上单调减.(5分)
(3)由(2)知f(x)在(-4,1)和(3,4)上单调增,(1,3)上单调减
又f(-4)=-384,
f(1)=f(4)=16,
f(3)=8,
∴f(x)在[-4,4]上的最大值为16,最小值为-384.(5分)
点评:本题考查求常数a的值,求f(x)在R上的单调区间,求f(x)在[-4,4]上的最值.解题时要认真审题,仔细解答,注意挖掘题设中的隐条件,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2、设函数f(x)=2x+3,g(x)=3x-5,则f(g(1))=
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

给定实数a(a≠
12
),设函数f(x)=2x+(1-2a)ln(x+a)(x>-a,x∈R),f(x)的导数f′(x)的图象为C1,C1关于直线y=x对称的图象记为C2
(Ⅰ)求函数y=f′(x)的单调区间;
(Ⅱ)对于所有整数a(a≠-2),C1与C2是否存在纵坐标和横坐标都是整数的公共点?若存在,请求出公共点的坐标;若不若存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
(2x+1)(3x+a)
x
为奇函数,则a=
-
3
2
-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2x+x-4,则方程f(x)=0一定存在根的区间为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
-2x+m2x+n
(m、n为常数,且m∈R+,n∈R).
(Ⅰ)当m=2,n=2时,证明函数f(x)不是奇函数;
(Ⅱ)若f(x)是奇函数,求出m、n的值,并判断此时函数f(x)的单调性.

查看答案和解析>>

同步练习册答案